A Recurring Digital Invariant variant
[le
titre est (c) Mensanator sur rec.puzzles]
L’idée est la suivante :
a) choisir un nombre N
b) appeler « k » la quantité de chiffres
qui composent N
c) élever tous les chiffres de N à la puissance k et
additionner les résultats
d) appeler ce nouveau nombre N et retourner à
l’instruction (b)
Exemple :
a) 14 = N
b) k = 2
c) 1^2 + 4^2 = 17
d) 17 = N
e) k = 2
f) 1^2 + 7^2 = 50
g) 50 = N
... etc.
On se propose d’étudier les boucles, les points
fixes éventuels, etc.
Tout avait commencé (à la mi-février 2009) par
une lecture (le lien bleu ci-dessous) et un double message aux listes SeqFans et rec.puzzles.
----------
Hello SeqFans,
http://mathworld.wolfram.com/RecurringDigitalInvariant.html
... what if k = "length of the considered integer"?
(k = 2 for the integer 14, for instance)
Starting with
said 14:
14 -> 1^2
+ 4^2 = 17
17 -> 1^2
+ 7^2 = 50
50 -> 5^2
+ 0^2 = 25
25 -> 2^2
+ 5^2 = 29
29 -> 2^2
+ 9^2 = 85
85 -> 8^2
+ 5^2 = 89
89 -> 8^2
+ 9^2 = 145
145 -> 1^3 + 4^3 + 5^3 = 190
190 -> 1^3 + 9^3 + 0^3 = 730
730 -> 7^3 + 3^3 + 0^3 = 370
370 -> 3^3 + 7^3 + 0^3 = 370 (fixed
point)
First fixed points:
S = 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
, 370, ...
Any more?
Best,
É.
---------------
[Réponse de Mensanator sur rec.puzzles] :
Oh, a Recurring Digital
Invariant variant, eh?
> Any more?
Lots.
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 370, 217, 153, 352,
371, 136, 586, 886898, 1009, 160, 244, 76438, 853, 259, 736, 862, 664, 2929, 407,
496, 845130, 3283, 8208, 6514, 6562, 50062, 23131558, 1634, 2178, 124618,
13154, 4274, 59536, 3233, 7154, 4394, 9474]
[Python]:
import gmpy
inv_hist =[]
for n in xrange(10000):
hist = []
while n not in hist:
hist.append(n)
s = gmpy.digits(n)
p = len(s)
n = 0
for d in s:
n += int(d)**p
if n not in inv_hist:
inv_hist.append(n)
print inv_hist
---------------
[Réponse de Hans
Havermann
sur SeqFans] :
Envoyé : mercredi 18 février 2009 2:00
À : Sequence Fanatics Discussion list
Objet : [seqfan]
Re: Recurring Digital
Invariant
Eric Angelini:
> ... what if
k = "length of the considered
integer"?
If I am doing this correctly,
here are the first 34 cycles (by size of smallest precursor).
The format for each is:
index {smallest
precursor, cycle length, {the cycle
itself with the smallest element of the cycle
first}}:
1 { 1,
1, {1}}
2 { 2,
1, {2}}
3 { 3,
1, {3}}
4 { 4,
1, {4}}
5 { 5,
1, {5}}
6 { 6,
1, {6}}
7 { 7,
1, {7}}
8 { 8,
1, {8}}
9 { 9,
1, {9}}
10 { 14,
1, {370}}
11 {
59, 3, {160, 217, 352}}
12 {
108, 1, {153}}
13 {
119, 1, {371}}
14 {
136, 2, {136, 244}}
15 {
138, 10, {259, 862, 736, 586,
853, 664, 496, 1009, 6562, 3233}}
16 {
147, 14, {18829, 124618, 312962,
578955, 958109, 1340652, 376761, 329340, 537059, 681069, 886898, 1626673,
1665667, 2021413}}
17 {
177, 2, {58618, 76438}}
18 {
389, 6, {2929, 13154, 4394,
7154, 3283, 4274}}
19 {
407, 1, {407}}
20 {
559, 3, {282595, 824963,
845130}}
21 { 709, 1, {8208}}
22 {
999, 2, {2178, 6514}}
23 { 1118, 4, {10933, 59536, 73318, 50062}}
24 { 1157,
12, {5908997, 17347727, 23131558, 17571846, 30442597, 49340036,
44870531, 23070276, 13216291, 44733413, 5981093, 11743403}}
25 { 1346, 1, {1634}}
26 { 4479, 1, {9474}}
27 { 11227, 1, {54748}}
28 { 12399, 1, {32164049651}}
29 { 22779, 1, {92727}}
30 { 30489, 1, {93084}}
31 {100666,
12, {1680387, 5299971, 15250704, 6611844, 2689794, 12783081, 39326052,
45130596, 45579685, 68505765, 27073124, 11602212}}
32 {127779,
1, {548834}}
33 {577999,
1, {4210818}}
34 {677779,
3, {2767918, 8807272, 5841646}}
35 {1000259, 1, {9926315}}
36 {1001458, 6, {2191663, 5345158, 2350099, 9646378,
8282107, 5018104}}
37 {1007889, 1, {9800817}}
38 {1035889, 2, {8139850, 9057586}}
39 {1124577, 1, {1741725}}
40 {1188888, 1, {24678051}}
41 {2055779, 2, {2755907, 6586433}}
42 {2566699, 1, {472335975}}
43 {4888888, 10, {180450907, 564207094, 440329717,
468672187, 369560719, 837322786, 359260756, 451855933, 527799103, 857521513}}
44 {10135679, 1, {24678050}}
45 {10146899, 1, {146511208}}
46 {10233389, 1, {88593477}}
47 {10266888, 7, {1139785743, 5136409024, 3559173428,
4863700423, 1418899523, 9131926726, 7377037502}}
48 {14489999, 3, {180975193, 951385123, 525584347}}
49 {14788889, 1, {912985153}}
50 {20248999, 1, {534494836}}
51 {155999999, 2, {277668893, 756738746}}
Any number < 10^9 will fall into one of these 51 cycles.
Magnifiques travaux, Mensanator et Hans !
On peut tirer plusieurs suites à partir de cette
idée (les trois dernières ont été calculées par Hans) :
Suite S(1) des nombres qui cyclent sur eux-mêmes
(nombres « narcissiques ») ;
on regarde les « 1 » de la 3e colonne ci-dessus :
S(1) = 1,2,3,4,5,6,7,8,9,153,370,371,407,1634,8208,9474,54748,92727,93084,548834,
... [A005188].
Cette suite ne comporte que 88 termes.
Suite S(2) des plus petits nombres qui entrent dans
un cycle encore inconnu (c’est la 2e colonne ci-dessus) :
S(2) = 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 59, 108, 119, 136, 138,
147, 177, 389, 407, 559, 709, 999, 1118, 1157, 1346, 4479, 11227, 12399, 22779,
30489, 100666, 127779, 577999, 677779, 1000259, 1001458, 1007889, 1035889,
1124577, 1188888, 2055779, 2566699, 4888888, 10135679, 10146899, 10233389,
10266888, 14489999, 14788889, 20248999, 155999999, ...
Suite S(3) des nombres qui font partie d’un cycle
(on classe par ordre croissant les résultats de la 4e
colonne) :
S(3) = 1, 2, 3, 4, 5, 6, 7, 8, 9, 136, 153, 160, 217, 244,
259, 352, 370, 371, 407, 496, 586, 664, 736, 853, 862, 1009, 1634, 2178, 2929, 3233,
3283, 4274, 4394, 6514, 6562, 7154, 8208, 9474, 10933, 13154, 18829, 50062,
54748, 58618, 59536, 73318, 76438, 92727, 93084, 124618, 282595, 312962,
329340, 376761, 537059, 548834, 578955, 681069, 824963, 845130, 886898, 958109,
1340652, 1626673, 1665667, 1680387, 1741725, 2021413, 2191663, 2350099,
2689794, 2755907, 2767918, 4210818, 5018104, 5299971, 5345158, 5841646,
5908997, 5981093, 6586433, 6611844, 8139850, 8282107, 8807272, 9057586,
9646378, 9800817, 9926315, 11602212, 11743403, 12783081, 13216291, 15250704,
17347727, 17571846, 23070276, 23131558, 24678050, 24678051, 27073124, 30442597,
39326052, 44733413, 44870531, 45130596, 45579685, 49340036, 68505765, 88593477,
146511208, 180450907, 180975193, 277668893, 359260756, 369560719, 440329717, 451855933,
468672187, 472335975, 525584347, 527799103, 534494836, 564207094, 756738746,
837322786, 857521513, 912985153, 951385123, ...
Suite S(4) des nombres qui font partie d’un cycle
sans être « narcissiques » ; Hans Havermann les appelle « pseudo-altruistes » :
S(4) = 136, 160, 217, 244, 259, 352, 496,
586, 664, 736, 853, 862, 1009, 2178, 2929, 3233, 3283, 4274, 4394, 6514, 6562,
7154, 10933, 13154, 18829, 50062, 58618, 59536, 73318, 76438, 124618, 282595,
312962, 329340, 376761, 537059, 578955, 681069, 824963, 845130, 886898, 958109,
1340652, 1626673, 1665667, 1680387, 2021413, 2191663, 2350099, 2689794,
2755907, 2767918, 5018104, 5299971, 5345158, 5841646, 5908997, 5981093,
6586433, 6611844, 8139850, 8282107, 8807272, 9057586, 9646378, 11602212,
11743403, 12783081, 13216291, 15250704, 17347727, 17571846, 23070276, 23131558,
27073124, 30442597, 39326052, 44733413, 44870531, 45130596, 45579685, 49340036,
68505765, 180450907, 180975193, 277668893, 359260756, 369560719, 440329717,
451855933, 468672187, 525584347, 527799103, 564207094, 756738746, 837322786,
857521513, 951385123, 1139785743, 1418899523, 3559173428, 4863700423, 5136409024,
7377037502, 9131926726, 59906808718, 66814785298, 71352591397, 90920874919,
99312318232, 136095696124, 571650873350, 1113928853354, 1128275756843,
1308860468429, 3396705890823, 3643890762383, 3654709782417, 3656948275943,
3764461348892, 3764592377975, 4217390478269, 5486860104254, 5650346085989,
5759076689801, 5840462013812, 6213095485028, 6294418483143, 6405584099531,
22955961974580, 24318257549352, 27510477911590, 27971919071792, 28794385423806,
32357226447319, 36834169210461, 47800729611562, 73803590128032, 94220062144011,
255349823145519, 321411732579837, 447090882837630, 1988938580054728,
2276352319249162, 2419253396913226, 2766744975063429, 3745072497367240,
3814368015105159, 4314122390900936, 4840861420987271, 5146957705687367,
5561890395668808, 5564859798630665, 18963633035544997, 21697619891079652,
21897923093961655, 21914086555935085, 25950934023321628, 33637808638944484,
35624633319183334, 35876461872431926, 36306344090162179, 37878721692554416,
37909523382771553, 38160589126493611, 52551389500766905, 69228536582676925,
69477330558375418, ...
Hans termine son courrier avec
cette question pertinente :
Knowing that the number of cycles of length 1 is finite, a question remains:
Is the number of cycles of ALL possible lengths also finite?
Qui trouvera par ailleurs ne fut-ce qu’un
cycle de longueur 5 ? En existe-t-il ?
__________
Depuis cet appel à l’aide, un cycle de
longueur 5 a été trouvé indépendamment par Hans Havermann puis Jean-Paul
Davalan :
3656948275943 5759076689801 6405584099531
5650346085989 6213095485028
« Ces nombres ont 13 chiffres. Il n'existe
pas d'autre 5-cycle contenant un nombre de 17 chiffres ou moins », précise
Jean-Paul.
Merci à tous,
(à suivre)
É.
(cette
page du site de Harvey Heinz nous fut
précieuse)
__________
Retour à la page d’accueil du site.