Start with the first Prime > 2 not used
so far [3]; call it P1
; find the smallest unused prime P2 so to build the equality P1 + P2 =
P3 + P4 (here: 3 + 13 = 5 + 11). Repeat.
P1 + P2 = P3
+ P4 = Sum
3 |
13 |
5 |
11 |
16 |
7 |
29 |
17 |
19 |
36 |
23 |
61 |
31 |
53 |
84 |
37 |
47 |
41 |
43 |
84 |
59 |
79 |
67 |
71 |
138 |
73 |
107 |
83 |
97 |
180 |
89 |
127 |
103 |
113 |
216 |
101 |
139 |
109 |
131 |
240 |
137 |
163 |
149 |
151 |
300 |
157 |
191 |
167 |
181 |
348 |
173 |
199 |
179 |
193 |
372 |
197 |
241 |
211 |
227 |
438 |
223 |
239 |
229 |
233 |
462 |
251 |
269 |
257 |
263 |
520 |
271 |
293 |
281 |
283 |
564 |
277 |
347 |
307 |
317 |
624 |
311 |
373 |
331 |
353 |
684 |
313 |
383 |
337 |
359 |
696 |
349 |
397 |
367 |
379 |
746 |
389 |
421 |
401 |
409 |
810 |
419 |
457 |
433 |
443 |
876 |
431 |
479 |
449 |
461 |
910 |
439 |
491 |
463 |
467 |
930 |
487 |
521 |
499 |
509 |
1008 |
503 |
577 |
523 |
557 |
1080 |
541 |
569 |
547 |
563 |
1110 |
571 |
617 |
587 |
601 |
1188 |
593 |
613 |
599 |
607 |
1206 |
619 |
653 |
631 |
641 |
1272 |
643 |
677 |
647 |
673 |
1320 |
659 |
733 |
683 |
709 |
1392 |
661 |
757 |
691 |
727 |
1418 |
701 |
761 |
719 |
743 |
1462 |
739 |
809 |
751 |
797 |
1548 |
769 |
827 |
773 |
823 |
1596 |
787 |
853 |
811 |
829 |
1640 |
821 |
877 |
839 |
859 |
1698 |
857 |
887 |
863 |
881 |
1744 |
883 |
947 |
911 |
919 |
1830 |
907 |
971 |
937 |
941 |
1878 |
929 |
991 |
953 |
967 |
1920 |
977 |
1019 |
983 |
1013 |
1996 |
997 |
1033 |
1009 |
1021 |
2030 |
1031 |
1069 |
1039 |
1061 |
2100 |
1049 |
1093 |
1051 |
1091 |
2142 |
1063 |
1151 |
1097 |
1117 |
2214 |
1087 |
1187 |
1103 |
1171 |
2274 |
...
Is this of interest ? The five columns above could
produce 5 new seq. for the OEIS
(terms computed by Gilles Sadowski).
Best,
É.
__________
Retour à la page d’accueil
du site, là.