The first differences of S
are the odd terms of S
We start alternating even numbers (in
yellow) and “holes” like this:
S = 2 . 4 .
6
. 8
. 10
. 12
. 14
. 16
. 18
. 20
. 22
.....
We fill the first hole with ‘1’:
S = 2 1 4 . 6 .
8
. 10
. 12
. 14
. 16
. 18
. 20
. 22
.....
We compute the first differences, D:
S = 2 1 4 . 6 . 8 .
10
. 12
. 14
. 16
. 18
. 20
. 22
.....
D = 1 3
We duplicate this last ‘3’ in the first
free hole of S:
S = 2 1 4 3 6 .
8
. 10
. 12
. 14
. 16
. 18
. 20
. 22
.....
D = 1 3
We compute the next differences, D:
S = 2 1 4 3 6 . 8 . 10 . 12 .
14
. 16
. 18
. 20
. 22
.....
D = 1 3 1 3
We duplicate these results accordingly
in S:
S = 2 1 4 3 6
1 8 3 10 . 12 . 14 .
16
. 18
. 20
. 22
.....
D = 1 3 1 3
We extend D as before:
S = 2 1 4 3 6
1 8 3 10 .
12
. 14
. 16
. 18
. 20
. 22
.....
D = 1 3 1 3 5 7 5 7
Duplication in S of the new terms of D:
S = 2 1 4 3 6
1 8 3 10 5 12 7 14 5
16 7 18 . 20 .
22
.....
D = 1 3 1 3 5 7 5 7
Etc.
S = 2 1 4 3 6
1 8 3 10 5 12 7 14 5 16 7 18 . 20 .
22
.....
D = 1 3 1 3 5 7 5 7 5 7 5
7 9 11 9 11
S becomes:
S = 2 1 4 3 6
1 8 3 10 5 12 7 14 5 16 7 18 5 20 7 22 5 24 7 26 9 28 11 30 9 32 11 34 13 36 15 38 13 40....
We can start S with ‘1’ and affirm now
that “the absolute first differences of S are the odd terms of S”:
S = 1 2 1 4 3 6
1 8 3 10 5 12 7 14 5 16 7 18 5 20 7 22 5 24 7 26 9 28 11 30 9 32 11 34 13 36 15 38 13 40....
Best,
É.