Hello SeqFan,

could someone compute a few more terms of this seq:

 

1  12  14  155  160  211  271  292  419  548  572  691 ...

 

The principle is:

 

- Seq and first differences show the same "digit pattern".

 

S = 1  12  14   155  160  211  271  292   419   548  572  691 ...

d =  11   2  141    5   51   60   21   127   129   24   19 ...

 

Rules:

- start S with "1"

- add to the last term of S the smallest integer d no yet

  added and not present in S such that the concatenation

  of S's terms and the concatenation of all ds are the

  same string of digits

 

So, never twice the same integer in sequence or first

differences.

 

I'm quite sure that all N's will be split between S and d.

 

Best,

É.

 

http://www.research.att.com/~njas/sequences/A110621 

has a close Mathematica pgm by Robert G. Wilson.

 

(thanks again to him!)