Any 2 neighboring digits
sum to a prime
Hello SeqFans,
Any digit-pair in S sums to a prime, commas or not:
S = 1, 2, 3, 4, 7, 6, 5, 8, 9, 20, 21, 11, 12, 14, 16, 50, 23, 25, 29,
41, 43, 47, 49, 83, 85, 61, 65, 67, 411, 111, 112, 30, 32, 34, 38, 52, 56, 58,
92, 94, 70, 74, 76, 114, 98, 302, 116, 120, 202, 121, 123, 89, 203, ...
S is supposed not to show twice the same integer, and S wants to be the lexico-first such seq.
----------
The same seq with prime absolute differences between two neighboring
digits is perhaps T:
T = 1, 3, 5, 2, 4, 6, 8, 13, 14, 7, 9, 20, 24, 16, 18, 30, 25, 27, 29,
41, 31, 35, 36, 38, 50, 52, 42, 46, 47, 49, 61, 63, 53, 57, 58, 64, 68, 69, 70,
72, 74, 75, 79, 202, 92, 94, 96, 81, 83, 85, 86, 97, 203, 130, 205, 207, 241,
302, 413, 131, ...
Best,
É.
__________
[Lars Blomberg] :
Hello Eric,
S = 1, 2, 3, 4, 7, 6, 5, 8, 9, 20, 21, 11, 12, 14, 16, 50, 23, 25, 29,
41, 43, 47, 49, 83, 85, 61, 65, 67, 411, 111, 112, 30, 32, 34, 38, 52, 56, 58,
92, 94, 70, 74, 76, 114, 98, 302, 116, 120, 202, 121, 123, 89, 203, 205, 207,
412, 125, 211, 129, 212, 141, 143, 214, 147, 414, 149, 216, 161, 165, 230, 232,
167, 416, 502, 303, 234, 305, 238, 307, 430, 250, 252, 320, 256, 503, 258, 321,
292, 323, 294, 325, 298, 329, 432, 341, 434, 343, 438, 347, 470, 349, 474, 383,
476, 505, 611, 492, 385, 612, 389, 494, 702, 507, 498, 520, 521, 614, 703, 830,
523, 832, 525, 616, 529, 834, 705, 650, 561, 652, 565, 656, 567, 658, 583, 838,
585, 670, 589, 850, 707, 674, 741, 676, 743, 852, 920, 747, 4111, 1111, 1112,
921, 1114, 749, 856, 761, 1116, 765, 858, 923, 892, 925, 894, 767, 4112, 929,
898, 941, 1120, 2020, 2021, 1121, 1123, 2023, 2025, 2029, 2030, 2032, 943,
2034, 947, 4114, 949, 2038, 983, 2050, 2052, 985, 2056, 1125, 2058, 989, 2070,
2074, 1129, 2076, 1141, 1143, 2111, 1147, 4116,...
Here is a graph of S with values < 10^5.
For each maximum
value 10^n there are much fewer candidates that are internally consistent.
Calculating the
candidates first greatly reduces the work of finding the sequence,
This table shows the
length of the sequence and the number of candidates for some maximum values
Max = 10^n Sequence
Candidates
2
28 41
3
147 166
4
503 643
5
2119 2467
6
7581 9432
7
30731 36078
8
112977 137844
9
447183 527115
A little on the side:
The number of candidates increases by a factor of about 3.82 for each power of
10.
The T sequence has similar properties, although the factor
between the candidates is about 4.64.
[The T seq has prime absolute
differences between two neighboring digits]:
T = 1, 3, 5, 2, 4, 6, 8, 13, 14, 7, 9, 20, 24, 16, 18, 30, 25, 27, 29, 41,
31, 35, 36, 38, 50, 52, 42, 46, 47, 49, 61, 63, 53, 57, 58, 64, 68, 69, 70, 72,
74, 75, 79, 202, 92, 94, 96, 81, 83, 85, 86, 97, 203, 130, 205, 207, 241, 302,
413, 131, 303, 135, 242, 414, 136, 138, 141, 305, 246, 142, 416, 146, 147, 247,
249, 250, 252, 418, 149, 253, 161, 307, 257, 258, 163, 164, 168, 169, 270, 272,
420, 274, 181, 313, 183, 185, 275, 279, 292, 424, 186, 314, 294, 296, 316, 318,
350, 297, 425, 352, 427, 429, 461, 353, 502, 463, 503, 505, 357, 464, 613, 507,
468, 358, 361, 363, 520, 364, 614, 616, 368, 369, 469, 470, 381, 383, 524, 618,
385, 386, 472, 474, 630, 525, 702, 475, 703, 527, 479, 492, 494, 631, 496, 497,
529, 635, 705, 707, 530, 531, 636, 813, 535, 720, 536, 814, 638, 538, 570, 572,
574, 641, 642, 575, 724, 646, 816, 818, 579, 647, 581, 649, 681, 683, 583, 585,
725, 727, 586, 830, 729, 685, 741, 686, 831, 692, 742, 746, 835, 747,...
One can think of many
other properties of 2 digits, such as the sum is divisible by 3 and many other that
will lead to different sequences, which I am sure you are already aware of. Do
you think it would be useful to investigate those?
Regards,
Lars.
__________
[Maximilian Hasler]:
> Eric
Angelini wrote:
>
> Any digit-pair
in S sums to a prime, commas or not:
> S=1,2,3,4,7,6,5,8,9,20,21,11,12,14,16,50,23,25,29,41,43,47,49,83,85,61,65,
I think
"any 2 subsequent digits" would be better, "any pair" does
not require that they are neighbors.
> S is supposed not to show twice the same integer, and S wants to be the lexico-first such
seq.
The sequence
0, 2, 1, 4,
3, 8, 5, 6, 7, 41, 11, 12, 9, 20, 21, 14, 16, 50, 23, ...
has the same
property and is lexicographically smaller than yours. ;-)
My script
EA114(n,a=[1],u=0)={ while(#a<n, u+=1<<a[#a];
for(t=a[1]+1,9e9, bittest(u,t) & next; my(d=concat(a[#a]%10,digits(t)));
for(i=2,#d, isprime(d[i-1]+d[i])
|| next(2)); a=concat(a,t);break));a
}
... confirms your terms (if they are to be positive) for S.
> The
same seq with prime absolute differences between
digits is perhaps T:
>
> T=1,3,5,2,4,6,8,13,14,7,9,20,24,16,18,30,25,27,29,41,31,35,36,38,50,52,42,46,
>
47,49,61,63,53,57,58,64,68,69,70,72,74,75,79,202,92,94,96,81,83,85,86,97,
>
203,130,205,207,241,302,413,131,...
>
Here, too,
my script
EA114b(n,a=[1],u=0)={ while(#a<n, u+=1<<a[#a];
for(t=a[1]+1,9e9, bittest(u,t) & next; my(d=concat(a[#a]%10,digits(t)));
for(i=2,#d, isprime(abs(d[i-1]-d[i]))
|| next(2)); a=concat(a,t);break));a
}
... confirms your terms if they are to be positive, and else
yields:
0, 2, 4, 1,
3, 5, 7, 9, 6, 8, 13, 14, 16, 18, 30, 20, 24, 25, 27, 29,
41, 31, 35,
36, 38, 50, 52, 42, 46, 47, 49, 61, 63, 53, 57, 58, 64,
68, 69, 70,
72, 74, 75, 79, 202, 92, 94, 96, 81, 83,...
A related
sequence would be that of numbers which certainly will never be in any of these
sequences, like 10,13,15,17,18,19,22,24,...
which is not yet
on OEIS,
and between 10 and 100 close to A104211 Integers
n such that the sum of the digits of n is not prime.
Best wishes,
Maximilian.
P.-S.
Dear all,
I forgot to mention that both variants of the
"sum" version had already been proposed almost exactly 1 year ago,
cf. A182175, A182177, A182178
and http://list.seqfan.eu/pipermail/seqfan/2012-April/009403.html
where variants had been proposed by using other sets than {2,3,5,7,11,13,17}
for allowed resp. forbidden digit
sums.
The "abs.diff."
versions are now proposed as:
A219249 (T starting with “1”),
A219250 (T starting with “0”),
... and the numbers missing
in A182177, A182178 are in A219110
(while the "candidates for extending A182177, A182178 are in A182175).
Maximilian
__________
[Eric Angelini] (in a private mail to Lars):
Hello again Lars,
(sorry to invade like this -- feel free not to answer, of
course)
Playing with
those 2-digit sums, I was wondering if one could build a sequence W ("W" like "Waow!") where:
- all absolute differences between terms are primes
- all absolute differences between digits are primes
[...]
__________
[Lars]:
Hello again!
See 203
terms here:
W = 1, 3, 5, 2, 4, 6, 8, 13, 16, 9, 7, 20, 25, 27, 24,
29, 42, 47, 49, 46, 35, 30, 53, 50, 31, 36, 38, 57, 52, 41, 64, 61, 63, 58, 69,
72, 70, 75, 86, 81, 68, 135, 74, 79, 242, 469, 246, 83, 85, 252, 425, 202, 413,
130, 203, 136, 131, 358, 147, 94, 92, 97, 270, 241, 302, 429, 250, 207, 205,
258, 149, 418, 141, 314, 163, 14, 181, 318, 161, 352, 461, 364, 183, 142, 479,
420, 247, 96, 169, 272, 463, 146, 303, 164, 253, 186, 313, 524, 297, 274, 185,
292, 503, 505, 294, 257, 414, 275, 316, 305, 307, 296, 357, 416, 363, 502, 497,
424, 635, 702, 475, 368, 361, 350, 249, 472, 470, 279, 616, 353, 520, 369, 496,
383, 574, 641, 468, 385, 752, 525, 386, 381, 464, 613, 530, 507, 494, 631, 474,
647, 538, 527, 529, 492, 535, 746, 813, 536, 427, 968, 579, 638, 531, 614, 681,
683, 570, 572, 575, 724, 705, 703, 630, 583, 581, 618, 649, 636, 835, 792, 725,
720, 707, 946, 857, 586, 863, 696, 853, 642, 749, 646, 869, 742, 585, 758, 685,
794, 697, 920, 727, 924, 757,...
18 is the
smallest number not yet used.
__________
[Eric to Lars]:
Many thanks,
Lars!
[...]
Is D the right start of a seq where 2
consecutive terms sum to a prime as well as two consecutive digits?
D = 1, 2, 3, 4, 7, 6, 5, 8, 9, 20, 21, 16, 111, 112, 121,
120, 29, 212, 11, 12, 125, 234, 149,...
Best,
É.
__________
Hello Eric!
I found the first 215 terms of D to
be:
D = 1, 2, 3, 4, 7,
6, 5, 8, 9, 20, 21, 16, 111, 112, 121, 120, 29, 212, 11, 12, 125, 234, 149,
230, 203, 216, 143, 258, 305, 252, 167, 432, 161, 116, 123, 214, 165, 202, 129,
238, 303, 298, 321, 250, 207, 412, 307, 612, 325, 232, 141, 256, 505, 292, 147,
416, 503, 294, 323, 434, 389, 438, 349, 474, 347, 414, 329, 492, 385, 676, 525,
656, 507, 430, 211, 498, 341, 470, 383, 476, 521, 650, 23, 830, 741, 658, 523,
838, 343, 850, 583, 856, 567, 494, 707, 614, 705, 616, 565, 652, 529, 832, 921,
1216, 561, 670, 589, 834, 749, 852, 925, 858, 929, 894, 703, 898, 585, 674,
765, 892, 985, 2034, 743, 2058, 941, 1112, 1125, 2038, 3021, 1232, 947, 4112,
989, 2030, 747, 4114, 1123, 2520, 2029, 2020, 2307, 4120, 2023, 2050, 2161,
1212, 949, 2052, 1111, 1230, 767, 4320, 761, 1116, 1121, 1250, 2021, 1238, 923,
2076, 1141, 1252, 1129, 2074, 1143, 2114, 1205, 6116, 1167, 4702, 1147, 4302,
3029, 2070, 2141, 1202, 1149, 2032, 1611, 1120, 2329, 2112, 1207, 4116, 1165,
2056, 1161, 1256, 1203, 2116, 1411, 1432, 3025, 2502, 5021, 1430, 2111, 1416,
5203, 2320, 2121, 1292, 1211, 1476, 7025, 8502, 5207, 6114, 943, 2920, 2167,
6120, 2123, 2120, 2303,...
The smallest number not used is 14 even up to terms
< 10^6.
__________
[Eric to SeqFans]:
Will 14 show up one day?
[Hans Haverman]:
Assume that it does. Let the number preceding
it be x. The final digit of x must be 1, 2, 4, or 6 in order for the sum of
that digit and the first digit of 14 to be prime. Now,
x + 14 must also be prime, but the final digit of x + 14 will be 5, 6, 8, or 0
and there is no prime ending in that. Therefore x does not exist and 14 will
not show up.
__________
[Lars] (extending nicely those ideas):
If we want a sequence with maximum "primality" in it, how about L:
- All terms are prime
- Concatenation of 2 adjacent digits is prime
- Concatenation of 2 adjacent terms is prime
I found 345 terms of L using
primes <= 99999989 as candidates
L = 1, 3, 7, 19, 73,
1117, 31, 37, 97, 373, 13, 1171, 11131, 11113, 79, 71713, 17137, 11173, 11719,
717979, 71719, 731173, 111373, 11197, 313, 71971, 11731, 13171, 11119, 731737,
113719, 719731, 379, 737119, 797119, 7171111, 37117, 19717, 11311, 97117,
17971, 11971, 71119, 737179, 797311, 97171, 17317, 113173, 113731, 11317,
117979, 731113, 13711, 37171, 71317, 131371, 117373, 117973, 113131, 131713,
111973, 119737, 179719, 71111137, 131113, 117319, 711973, 131731, 137119,
7137313, 131797, 173713, 179737, 311197, 137131, 713737, 131311, 311371,
113797, 119797, 173137, 313717, 197371, 197311, 311137, 131317, 311173, 737131,
317179, 7117171, 311713, 197137, 371719, 7171711, 137197, 313711, 371131,
197971, 317371, 311737, 371797, 979717, 371179, 71171797, 1137973, 719713,
1317319, 731719, 797131, 317971, 371737, 971713, 1171117, 371311, 317197, 1373173,
1313731, 1171111, 1117117, 373717, 371971, 1313797, 373171, 1731313, 1973197,
3111313, 1717117, 1373137, 1973113, 731713, 1117111, 1797379, 7379731, 971197,
971371, 1319737, 3111973, 7373719, 7131373, 1379797, 1971313, 7311313, 1111711,
1973731, 3171313, 1979713, 1711117, 3119737, 3111319, 7319713, 1737979,
7131379, 7311373, 1797319, 7971973, 1131973, 1797373, 1131379, 7313113,
1973737, 3119797, 3137311, 3131137, 3717313, 7979737, 3713737, 3173119,
71371711, 3119713, 1319719, 7973131, 3131311, 1137313, 7197313, 7137379,
71111713, 11179717, 3131173, 1731979, 7971373, 11173111, 3137179, 7373797,
3179797, 3719713, 7973137, 3711313, 11113111, 3731731, 3131113, 11171137,
3719797, 3137371, 3197137, 3731173, 11111119, 7379797, 3717319, 71111197,
3113197, 3731713, 11113171, 3797371, 3731311, 3731137, 9711379, 79731313,
11171317, 9711979, 71111113, 11111173, 11131111, 3137137, 3737311, 3797113,
11717317, 9713131, 3711319, 71117119, 71719717, 3737131, 11173711, 3717979,
71713111, 3737179, 7319737, 3731737, 9731713, 11171179, 71717119, 71311717,
3737197, 9717313, 11171371, 9737173, 11311117, 3737137, 9713713, 11713717,
9737113, 11111311, 9797311, 9797173, 13197313, 11111131, 11171731, 9713113,
11173171, 11131171, 11713111, 9797113, 11197117, 9711319, 71131717, 9731317,
3797179, 71113111, 11711311, 11711137, 11711731, 9737137, 11717137, 11197111,
9797371, 11711797, 9719737, 11719711, 11731171, 17117371, 11131717, 19711717,
9737971, 11713171, 11971711, 11311717, 9737197, 11971117, 11731711, 17371171,
13111117, 17111737, 31137373, 17311711, 13731973, 13737979, 71731111, 13131373,
13137973, 13731313, 17137117, 11971717, 11713711, 13131319, 71971111, 17111137,
19737973, 13197979, 71173111, 17971111, 17197111, 17117179, 71171731, 13111717,
17311171, 9719797, 13111711, 13737319, 73197973, 11717311, 19731979, 79717117,
17197171, 17111179, 71171137, 17137111, 13797379, 71173717, 13711717, 17971711,
17371117, 31313731, 31731379, 71711131, 19711711, 17171131, 37171171, 31131379,
71731717, 31131979, 73731319, 71111311, 31371313, 71117113, 71111371, 31313713,
73731379, 73117117, 31797379, 71711737, 97197973, 73137373, 17179717, 31117171,
31197319, 73197979,...
The list of candidates not used starts like this:
2, 5, 11, 17, 23, 29, 41, 43, 47, 53, 59, 61, 67, 71,
83, 89, 113, 131, 137, 173, 179, 197, 311, 317, 419, 431, 479, 613, 617, 619,
673, 719, 797, 971,
The smallest value not used is 2, which makes sense
because including 2 means there must be a two digit number ending in 2 which is
not prime. The same goes for 5.
/Lars B
__________
Beautiful seq, Lars! (Does
L stand for Lars ;-)
And many
thanks to all contributors!
Best,
É.