Decimation-like sequences
Hello SeqFan and
Math-fun ;
(sorry if this is old hat)
Please have a look at
this sequence:
S=
1 2 3 4 5 6 7 8 9 1 1
1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 3 2 1 3 2 1 3 2 1 3 4 2 1 3 4 2 1 3 4 2 5 1
3 4 2 5 1 3 4 2 6 5 1 3 4 2 6 5 1 3 7 4 2
6 5 1 3 7 4 2 8 6 5 1 3 7 4 2 8 6 9 5 1 3 7 4 2 8 6 9 1 5 1 3 7 4 2 8 6
9 1 1 5 1 3 7 4 2 8 6 1 9 1 1 5 1 3 7 4 2 1 8 6 1 9 1 1 5 1 3 1 7 4 2 1 8 6 1 9
1 1 1 5 1 3 1 7 4 2 1 1 8 6 1 9 1 1 1 5 1 1 3 1 7 4 2 1 ...
Mark in yellow every 10th integer:
S=
1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 3 2 1 3 2 1 3 2 1 3 4 2 1 3 4 2 1 3 4 2 5 1 3 4 2 5 1 3 4 2 6 5 1 3 4 2 6 5 1 3 7 4 2 6 5 1 3 7 4 2 8 6 5 1 3 7 4 2 8 6 9 5 1 3 7 4 2 8 6 9 1 5 1 3 7 4 2 8 6 9 1 1 5 1 3 7 4 2 8 6 1 9 1 1 5 1 3 7 4 2 1 8 6 1 9 1 1 5 1 3 1 7 4 2 1 8 6 1 9 1 1 1 5 1 3 1 7 4 2 1 1 8 6 1 9 1 1 1 5 1 1 3 1 7 4 2 1 ...
Erase all yellow
terms:
E=
1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 3 2
1 3 2 1 3 2 1 3 4 2 1 3 4 2 1 3 4 2 5 1 3 4 2
5 1 3 4 2 6 5 1 3 4 2
6 5 1 3 7 4 2 6 5 1 3 7 4 2 8 6 5 1 3 7 4 2 8 6
9 5 1 3 7 4 2 8 6 9 1 5 1 3 7 4 2 8 6 9 1 1
5 1 3 7 4 2 8 6 1 9 1 1 5 1 3 7 4 2 1 8 6 1 9 1
1 5 1 3 1 7 4 2 1 8 6 1 9 1 1 1 5 1 3 1 7 4
2 1 ...
If you concatenate
the result (omit the blanks), you’ll get the
starting sequence:
E=S=
1 2 3 4 5 6 7 8 9 1 1
1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 3 2 1 3 2 1 3 2 1 3 4 2 1 3 4 2 1 3 4 2 5 1
3 4 2 5 1 3 4 2 6 5 1 3 4 2 6 5 1 3 7 4 2
6 5 1 3 7 4 2 8 6 5 1 3 7 4 2 8 6 9 5 1 3 7 4 2 8 6 9 1 5 1 3 7 4 2 8 6
9 1 1 5 1 3 7 4 2 8 6 1 9 1 1 5 1 3 7 4 2 1 8 6 1 9 1 1 5 1 3 1 7 4 2 1 8 6 1 9
1 1 1 5 1 3 1 7 4 2 1 1 8 6 1 9 1 1 1 5 1 1 3 1 7 4 2 1 ...
The nice thing being
that the succession of all yellow terms form also the
starting sequence:
Y=E=S=
. . . . . . . . . 1 . . . . . . . . . 2 . . . . . . . . . 3 . . . . . . . . . 4 . . . . . . . . . 5 . . . . . . . . . 6 . . . . . . . . . 7 . . . . . . . . . 8 . . . . . . . . . 9 . . . . . . . . . 1 . . . . . . . . . 1 . . . . . . . . . 1 . . . . . . . . . 1 . . . . . . . . . 1 . . . . . . . . . 1 . . . . . . . . . 1 . . . . . . . . . 1 . . . . . . ...
Could such sequences
be called «super-fractals»?
----------
There are infinitely
many decimation-like sequences:
instead of [1,2,3,4,5,6,7,8,9] the first nine integers could have been
[7,15,8933,42,3001,8,666,0,666], for instance (with
or without repeted terms). This new set would have produced this 10-super-fractal:
S=
7 15 8933 42 3001 8
666 0 666 7 7 7 7 7 7 7 7 7 7 15 7 15 7 15 7 15 7 15 7 8933 15 7 8933 15 7 8933
15 7 8933 42 15 7 8933 42 15 7 8933 42 15 3001 7 8933 42 15 3001 7 8933 42 15 8
3001 7 8933 42 15 8 3001 7 8933 666 42 15
8 3001 7 8933 666 42 15 0 8 3001 7 8933 666 42 15 0 8 666 3001 7 8933
666 42 15 0 8 666 7 3001 7 8933 666 42 15 0 8 666 7 7 3001 7 8933 666 42 15 0 8
7 666 7 7 3001 7 8933 666 42 15 7 0 8 7 666 7 7 3001 7 8933 7 666 42 15 7 0 8 7
666 7 7 7 3001 7 8933 7 666 42 15 7 7 0 8 7 666 7 7 7 3001 7 7 8933 7 666 42 15
7 ...
----------
Instead of yellowing every 10th integer, one could
mark every 7th, or 215th, or 3rd term, etc. – producing thus another infinite
bunch of super-fractals; here is such
a super-fractal with every 6th term marked:
S=
1 2 3 4 5 1 1 1 1 1 1
2 1 2 1 2 1 3 2 1 3 2 1 4 3 2 1 4 3 5 2 1 4 3 5 1 2 1 4 3 5 1 1 2 1 4 3 1 5 1 1
2 1 1 4 ...
1 2 3 4 5 1 1 1 1 1 1 2 1 2 1 2 1 3 2 1 3 2 1 4 3 2 1 4 3 5 2 1 4 3 5 1 2 1 4 3 5 1 1 2 1 4 3 1 5 1 1 2 1 1 4 ...
----------
The lowest bound (for the interval between two yellow marks) seems to be 2;
integers 0 et 1 would then produce (a):
(a)
0,1,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,1,...
Let’s check if it
works:
1) mark
every 3rd integer of (a) in yellow and get (b):
(a)
0,1,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,1,...
(b) 0,1,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,1,...
2) erase
all yellow marks from (b) and get (c):
(b) 0,1,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,1,...
(c)
0,1, 0,0, 0,1, 0,1, 0,0, 1,0 ,0,0, 0,1, 0,1, 0,0, 0,0, 1,1, 0,1, 0,0, 0,0, 0,0, ...
3) concatenate
all terms of (c) and get (d):
(c)
0,1, 0,0, 0,1, 0,1, 0,0, 1,0 ,0,0, 0,1, 0,1, 0,0, 0,0, 1,1, 0,1, 0,0, 0,0, 0,0, ...
(d)
0,1,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,...
4) compare
(d) to the starting sequence (a):
(a)
0,1,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,1,...
(d)
0,1,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,...
... same sequences!
5) write
down the successive previously yellow marked (and
erased) terms from (b) and get (e):
(b) 0,1,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,1,...
(e)
0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, ...
6) concatenate
all terms of (e) and get (f):
(e)
0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, ...
(f)
0,1,0,0,0,1,0,1,0,0,1,0,0,0,0,1, ...
7) Compare (f) to the
starting sequence (a):
(a)
0,1,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,1,...
(f) 0,1,0,0,0,1,0,1,0,0,1,0,0,0,0,1, ...
... same sequences again!
Isn’t this (a)
sequence the mother of all decimation-like super-fractals?
(a) is not in the OEIS
(it is now as A117943). Nor is
(g) where all 0’s and 1’s of (a) have been switched:
(g) 1,0,1,1,1,0,1,0,1,1,0,1,1,1,1,0,1,0,1,1,1,1,0,0,1,0,1,1,1,1,1,1,0,0,0,1,1,0,1,1,1,1,1,1,1,1,1,0,...
What could be the law
ruling the distribution of 0’s and 1’s in (a)? Gilles Sadowski has computed the first 1000 terms of (a) :
(a)=
0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 1
0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0
1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1
0 0 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 1 0 1 0 1
1 1 0 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1
0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 1 0 1
0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0
1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0
1 1 1 1 0 1 0 0 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0 1 0
1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1
1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1
1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 ...
What else can be said
about decimation-like sequences
and/or super-fractals?
Here is the building
method used for the 10-super-fractal
which opens this page:
1) choose de decimation-step d (here d=10 --> we will cancel all terms whose index is a multiple of
10)
2) choose (d-1) integers at random (they will form
the starting "seed" --> here 1,2,3,4,5,6,7,8,9)
3) draw line (1):
(1)
.........X.........X.........X.........X.........X.........X...
[this line (1) alternates 9 empty simple boxes and 1
"super-box" : a dot (.) stands for a simple box, an "X" for a super-box]
4) draw the
"punched" line (2) under line (1):
(1)
.........X.........X.........X.........X.........X.........X...
(2) .........
......... ......... ......... ......... ......... ...
(this line is the same as the
previous one -- but *without* the "X" super-boxes)
5) draw the continuous (S) line, which will be the
"sum" of lines (1) and (2):
(1)
.........X.........X.........X.........X.........X.........X...
(2) ......... ......... ......... ......... ......... ......... ...
(S) ...............................................................
6) Fill the first 9 empty single boxes of (2) with the
chosen "seed" :
(1)
.........X.........X.........X.........X.........X.........X...
(2) 123456789 ......... ......... ......... ......... ......... ...
(S)
...............................................................
Those 9 integers are also the first 9 X’s:
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 ......... ......... ......... ......... ......... ...
(S)
...............................................................
Start to "sum" (1) and (2) [to
"sum" is to "push" (1) into (2) which gives S]:
(1) .........1.........2.........3.........4.........5.........6...
(2) 123456789 ......... ......... ......... ......... ......... ...
(S)
1234567891.....................................................
Now comes the construction trick: line (2) must always
be filled by copying S’s succession of integers, *but* one can never write
*under* the "X’s". So we will write, to the right of the last 9 of
(2), the "1" which ends S for the moment:
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 1........ ......... ......... .........
......... ...
(S)
1234567891.....................................................
We see now that the succession of terms in (2) is the
same as the succession of terms in S [this is because we cannot use for writing
purpose the "hole" which is under the "1" of (1)]
We "sum" again:
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 1........ ......... ......... .........
......... ...
(S)
12345678911....................................................
The last "1" which appears on line S forces
the writing of a corresponding "1" behind the final "1" of
line (2) -- because line (2) always copies with a little delay the succession
of terms in S:
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 11....... ......... ......... .........
......... ...
(S)
12345678911....................................................
We "sum":
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 11....... ......... ......... .........
......... ...
(S)
123456789111...................................................
We copy S in (2):
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 111...... ......... ......... .........
......... ...
(S)
123456789111...................................................
We "sum":
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 111...... ......... ......... .........
......... ...
(S) 1234567891111..................................................
We copy S in (2):
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 1111..... ......... ......... .........
......... ...
(S) 1234567891111..................................................
... and so on -- till:
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 111111111 ......... ......... ......... ......... ...
(S) 123456789111111111.............................................
We "sum":
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 111111111 ......... ......... ......... ......... ...
(S) 1234567891111111111............................................
We copy S in (2):
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 111111111 1........ ......... .........
......... ...
(S)
1234567891111111111............................................
We "sum":
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 111111111 1........ ......... .........
......... ...
(S)
123456789111111111121..........................................
We copy the last *2* integers of S in (2):
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 111111111 121...... ......... .........
......... ...
(S)
123456789111111111121..........................................
We "sum":
(1) .........1.........2.........3.........4.........5.........6...
(2) 123456789 111111111 121...... ......... .........
......... ...
(S)
12345678911111111112121........................................
We copy the last *2* integers of S in (2):
(1) .........1.........2.........3.........4.........5.........6...
(2) 123456789 111111111 12121.... ......... .........
......... ...
(S)
12345678911111111112121........................................
We "sum" and copy till:
(1) .........1.........2.........3.........4.........5.........6...
(2) 123456789 111111111 121212121 21....... .........
......... ...
(S)
12345678911111111112121212121..................................
We "sum" again:
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 111111111 121212121 21....... .........
......... ...
(S)
12345678911111111112121212121321...............................
We copy the last *3* integers of S in (2):
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 111111111 121212121 21312.... .........
......... ...
(S)
12345678911111111112121212121321...............................
We "sum" and copy, till:
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 111111111 121212121 213213213 21.......
......... ...
(S)
12345678911111111112121212121321321321.........................
We "sum":
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 111111111 121212121 213213213 21.......
......... ...
(S)
123456789111111111121212121213213213213421.....................
We copy the last *4* integers of S in (2):
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 111111111 121212121 213213213 213421...
......... ...
(S)
123456789111111111121212121213213213213421.....................
We "sum" and copy, till:
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 111111111 121212121 213213213 213421342
1........ ...
(S) 1234567891111111111212121212132132132134213421.................
We "sum" again:
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 111111111 121212121 213213213 213421342
1........ ...
(S) 123456789111111111121212121213213213213421342134251............
We copy the last *5* integers of S in (2):
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 111111111 121212121 213213213 213421342
134251... ...
(S) 123456789111111111121212121213213213213421342134251............
We "sum" and copy till:
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 111111111 121212121 213213213 213421342
134251342 51.
(S) 12345678911111111112121212121321321321342134213425134251.......
We "sum" again:
(1)
.........1.........2.........3.........4.........5.........6...
(2) 123456789 111111111 121212121 213213213 213421342
134251342 51.
(S)
12345678911111111112121212121321321321342134213425134251342651.
... etc. This should be clear
now : line S is the sequence we were looking for.
[One must *not* forget that line (1) builds up step by
step too: line (1) is also a copy of S! Thus after the "seed" 1,2,3,4,5,6,7,8,9 the next "X" value is *not* 10
but 1! (because the 10th term of S is "1")]
We then get at the end (terms computed by Gilles Sadowski):
S=
1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1
2 1 3 2 1 3 2 1 3 2 1 3 4 2 1 3 4 2 1 3 4 2 5 1 3 4 2 5 1 3 4 2 6 5 1 3 4 2 6 5
1 3 7 4 2 6 5 1 3 7 4 2 8 6 5 1 3 7 4 2 8 6 9 5 1 3 7 4 2 8 6 9 1 5 1 3 7 4 2 8
6 9 1 1 5 1 3 7 4 2 8 6 1 9 1 1 5 1 3 7 4 2 1 8 6 1 9 1 1 5 1 3 1 7 4 2 1 8 6 1
9 1 1 1 5 1 3 1 7 4 2 1 1 8 6 1 9 1 1 1 5 1 1 3 1 7 4 2 1 1 8 6 1 1 9 1 1 1 5 1
1 3 1 1 7 4 2 1 1 8 6 1 2 1 9 1 1 1 5 1 1 3 1 1 1 7 4 2 1 1 8 6 2 1 2 1 9 1 1 1
5 1 1 1 3 1 1 1 7 4 2 1 2 1 8 6 2 1 2 1 9 1 1 1 1 5 1 1 1 3 1 1 2 1 7 4 2 1 2 1
8 6 1 2 1 2 1 9 1 1 1 1 2 5 1 1 1 3 1 1 2 1 1 7 4 2 1 2 1 8 6 1 3 2 1 2 1 9 1 1
1 1 2 2 5 1 1 1 3 1 1 2 1 1 1 7 4 2 1 2 1 8 3 6 1 3 2 1 2 1 9 1 2 1 1 1 2 2 5 1
1 1 1 3 1 1 2 1 1 1 7 4 3 2 1 2 1 8 3 6 1 3 2 2 1 2 1 9 1 2 1 1 1 1 2 2 5 1 1 1
1 3 3 1 1 2 1 1 1 7 4 3 4 2 1 2 1 8 3 6 1 3 2 2 2 1 2 1 9 1 2 1 1 1 1 1 2 2 5 1
1 1 3 1 3 3 1 1 2 1 1 1 4 7 4 3 4 2 1 2 1 8 2 3 6 1 3 2 2 2 1 2 1 1 9 1 2 1 1 1
1 1 3 2 2 5 1 1 1 3 1 3 4 3 1 1 2 1 1 1 4 7 2 4 3 4 2 1 2 1 8 2 5 3 6 1 3 2 2 2
1 2 1 1 1 9 1 2 1 1 1 1 3 1 3 2 2 5 1 1 1 3 4 1 3 4 3 1 1 2 1 1 2 1 4 7 2 4 3 4
2 1 5 2 1 8 2 5 3 6 1 3 1 2 2 2 1 2 1 1 1 9 3 1 2 1 1 1 1 3 1 3 4 2 2 5 1 1 1 3
4 1 2 3 4 3 1 1 2 1 1 2 6 1 4 7 2 4 3 4 2 1 5 5 2 1 8 2 5 3 6 1 1 3 1 2 2 2 1 2
1 1 3 1 9 3 1 2 1 1 1 1 4 3 1 3 4 2 2 5 1 1 2 1 3 4 1 2 3 4 3 1 6 1 2 1 1 2 6 1
4 7 5 2 4 3 4 2 1 5 5 2 1 1 8 2 5 3 6 1 1 3 3 1 2 2 2 1 2 1 1 3 7 1 9 3 1 2 1 1
1 1 4 4 3 1 3 4 2 2 5 1 2 1 2 1 3 4 1 2 3 4 6 3 1 6 1 2 1 1 2 6 5 1 4 7 5 2 4 3
4 2 1 1 5 5 2 1 1 8 2 5 3 3 6 1 1 3 3 1 2 2 7 2 1 2 1 1 3 7 1 9 4 3 1 2 1 1 1 1
4 4 2 3 1 3 4 2 2 5 1 2 8 1 2 1 3 4 1 2 3 4 6 6 3 1 6 1 2 1 1 2 5 6 5 1 4 7 5 2
4 3 1 4 2 1 1 5 5 2 1 1 3 8 2 5 3 3 6 1 1 3 7 3 1 2 2 7 2 1 2 1 4 1 3 7 1 9 4 3
1 2 2 1 1 1 1 4 4 2 3 1 8 3 4 2 2 5 1 2 8 1 6 2 1 3 4 1 2 3 4 6 9 6 3 1 6 1 2 1
1 2 5 5 6 5 1 4 7 5 2 4 1 3 1 4 2 1 1 5 5 2 3 1 1 3 8 2 5 3 3 6 7 1 1 3 7 3 1 2
2 7 4 2 1 2 1 4 1 3 7 1 2 9 4 3 1 2 2 1 1 1 8 1 4 4 2 3 1 8 3 4 6 2 2 5 1 2 8 1
6 2 9 1 3 4 1 2 3 4 6 9 1 ...
The (simple) algorithm used says:
a) put the seed at the beginning of (2)
b) copy the seed in the
successive X’s of line (1)
c) "Sum"
d) copy the "sum"
so far in the proper empty boxes of (2) and (1)
e) loop in (c)
This produces the three "equivalent" lines
(1), (2) and S.
____________________
This e-mail (in french), was sent to me by Jacques Tramu on May 1st, 2006 :
Je suis en
train de regarder combien il faut en moyenne d’itérations pour calculer le ne
terme pour n allant de 10 à 10**100 (1 googol).
Voir la courbe ci-joint pour k = 1000. C’est
remarquablement linéaire [en abscisse, log10(n) ;
en vert le nombre max d’itérations].
Éric : pour k = 10, voici le 100.........0000000e
terme (cent zéros), et les 10 suivants :
1
2 1 1
1 7 2
1 1 7 7
à suivre.
J.T.
____________________
This e-mail was sent
to me the same day by Kerry Mitchell :
Hi Eric,
I’ve been playing with your decimation sequences--very
interesting!
Attached is an image I created to simultaneously show
a 2-integer, a 3-integer, and a 4-integer sequence.
Each of the 576 (24 x 24) squares is one of 24 symbols
for the 2 x 3 x 4 = 24 possible values of the 3 sequences.
Kerry
Beautiful, Kerry, thanks !
___________________
Note of May 10th, 2006
I’ve noticed
yesterday that more super-fractals
can be created by increasing the size of the « X » super-boxes (see
above). Here is an example for a super-box
of size 3 which follows an empty 2-single
box:
(1) ..010..100..110..000..110..110..000..011..000..110..110..
(2) 01 01 00
11 00 00
11 01 10
00 00 11
(S) 010100110000110110000011000110110000101110000001100011011...
So S must be
understood like this:
S=
0,1,0,1,0,0,1,1,0,0,0,0,1,1,0,1,1,0,0,0,0,0,1,1,0,0,0,1,1,0,1,1,0,0,0,0,1,0,1,1,1,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,1,...
«Keep two integers,
underline the next three; keep two integers again, underline the next three;
keep two again, underline three; etc. The concatenation of all kept integers is
the sequence itself – and so is the concatenation of all underlined integers,
too»
S could be seen as a
«keep 2/underline 3» sequence. Here is a «keep 3/underline 2» sequence:
(1)
...01...20...10...10...20...10...21...00...10...10...21...
(2) 012
010 102 010
210 010 102
102 001 010
102 211
(S)
0120101020102100101021020010101022110200001100101010221211...
S=
0,1,2,0,1,0,1,0,2,0,1,0,2,1,0,0,1,0,1,0,2,1,0,2,0,0,1,0,1,0,1,0,2,2,1,1,0,2,0,0,0,0,1,1,0,0,1,0,1,0,1,0,2,2,1,2,1,1,...
[So A117943,
the «mother of all super-fractals», is simply a «keep 2/underline 1» sequence;
and the decimation sequence which
opens this page a «keep 9/underline 1» sequence]
To build such
super-fractal sequences, one must always start with at least a «keep 2»
statement; any «keep 1» statement (no matter how much
integers are underlined) would produce this kind of rather dull sequence:
(1)
.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000
(2) 0 0 0
0 0 0
0 0 0
0 0 0
(S)
000000000000000000000000000000000000000000000000000000000000...
To avoid more dull
sequences, k (number of kept integers) and u (number
of underlined integers) must be
mutually prime [k must not divide u and u must not divide k (except if u=1, of
course)].
If one starts a
sequence with a «keep 2» statement, the sequence will contain only two
different types of integers (0’s and 1’s; or 1’s and 0’s;
or 17’s and 9’s ; etc.) A «keep 3»
statement will thus produce a sequence showing only three different integers (no matter how much is underlined). So, if you want a
sequence containing all 26 letters of the alphabet, you’ll have to start with a
«keep 26» statement.
The values k and u can vary, of course, inside a sequence itself; one only needs a
simple rule to clearly see what is kept
and what is underlined. Here is a prime-based super-fractal:
(1) ..010.....1001001...........1001001001100.................
(2) 01
01001 00110010010 01100100101001001
(S) 0101001001100100100110010010100100100110001100100101001001
S must be understood
like this:
S=
0,1,0,1,0,0,1,0,0,1,1,0,0,1,0,0,1,0,0,1,1,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,0,1,1,0,0,0,1,1,0,0,1,0,0,1,0,1,0,0,1,0,0,1,...
«Keep 2 integers,
underline 3, keep 5, underline 7, keep 11, underline 13, keep
17... etc. The concatenation of all kept integers
is the sequence itself; the concatenation of all underlined integers is the
sequence itself too»
Here is a
fractal-sequence where the keep/underline
rule is given by the sequence itself (a self-describing super-fractal?):
(1) ..2..12..2..21.22..12..2.22..11..2..22..21.22..2..2.12..22..1
(2) 21 22 21
22 1
22 22 1 12 22
21 22
2 21 22 1 21 12
(S) 2122212212222112222122221221211222212221212222122221122122121
It reads: keep 2
integers,
underline 1,
keep 2,
underline 2,
keep 2,
underline 1,
keep
2,
underline
2,
keep
1,
underline 2,
keep
2,
underline
2,
keep
2,
underline
1,
keep
1, etc.
The diagonal is the
sequence itself (sequence coming soon in the OEIS, I hope). Again, the
concatenation of all kept integers is the sequence itself – and so is the
concatenation of all underlined integers.
Another self-describing super-fractal, with a
different «seed» (2,3 instead of
2,1):
(1) ..232..322..33...222..23..33...322...222..22..32..33..333
(2) 23 23 22 332
22 23 333
222 22 22
32 33
(S)
232322332222333322222223233333332222222222222232323333333...
It reads: keep 2
integers,
underline 3,
keep 2,
underline 3,
keep 2,
underline 2,
keep
3,
underline
3,
keep
2,
underline
2,
keep
2,
underline
2,
keep
3,
underline
3,
keep 3,
etc.
A last remark: as
many readers have already guessed, it is possible to build multi-layered fractal-sequences; one could keep, underline and italicise different integers; here is an
example where keep=2, underline=3 and italicise=4:
ital(i) .....0101.....0010.....1011.....0000.....1000.....1011.....
undl(u) ..010
..100 ..101 ..011
..000 ..010 ..001
keep(k) 01 01 00
10 10 11
00
seq.(S)
01010010101100001000101101110011000010000100011010101100001...
S (painfully) reads:
S=
0,1,0,1,0,0,1,0,1,0,1,1,0,0,0,0,1,0,0,0,1,0,1,1,0,1,1,1,0,0,1,1,0,0,0,0,1,0,0,0,0,1,0,0,0,1,1,0,1,0,1,0,1,1,0,0,0,0,1,...
a) keep the first 2 integers,
ignore the next 7, keep the next 2 integers, ignore the next 7, etc. The
concatenation of all kept integers is the sequence itself;
b) underline integers # 3,4
and 5; ignore the next 6, underline the next 3, ignore the next 6, underline
the next 3, etc. The concatenation of all underlined integers is the sequence
itself;
c) ignore the first 5
integers, italicise the next 4, ignore the next 5 integers, italicise the next
4, etc. The concatenation of all italicised integers is the sequence itself...
Ouf!
Best,
É.
_________
A
warm thanks to those who helped so far – and especially to Gilles Sadowski, Nicolas
Graner and Gilles Esposito-Farèse !
Please
find here
the .pdf paper of Jean-Paul Delahaye about this very subject, which was
published in march 2007 in the french magazine « Pour la Science ».
__________
Back
to main page, here
__________
BREAKING
NEWS — got this e-mail yesterday [September 21st, 2010] from Jean-Marc Falcoz:
Salut Eric,
J’ai découvert
(très tardivement :o)) tes magnifiques suites du
lézard ! Une fois de plus bravo.
J’enseigne les
maths appliquées à des bons élèves de 18-20 ans, alors j’ai fait un petit cours
de deux heures avec ces suites. On utilise Mathematica, et les élèves ont trouvé ça "très cool" (c’est l’expression qu’ils ont employée !)
On a un peu
regardé à droite et à gauche en regardant les trajectoires associées, et en
changeant des paramètres – enfin bref, on s’est bien amusés.
Merci à toi.
En PJ, les 3
pages d’introduction que je leur ai données.
Amicalement.
jm
Suites du lézard et suites de décimation
Une suite du lézard est une suite possédant deux
propriétés étonnantes :
Quand on ôte un terme sur trois de la suite, on
retrouve la même suite.
Les termes restants reforment également la suite d’origine.
Prenons par exemple 0, 1 comme premiers
termes :
L = 0,1,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,1,1,1,0,...
Afin de mieux visualiser la suite, on peut envisager
l’accumulation de tous les termes précédents:
L2 = 0,1,1,1,1,2,2,3,3,3,4,4,4,4,4,5,5,6,6,6,6,6,...
Les suites du lézard tirent leur nom du fait que si
on arrache la queue d’un lézard (donc un tiers de la bestiole), la queue
repousse et on retrouve le lézard.
Le petit programme que je vous fournis construit les
termes de la suite commençant par 0,1,... et représente également l’accumulation
des termes, puis cherche les positions des séquences comportant 23 fois de
suite le terme « 0 ».
Prenez le temps de comprendre son fonctionnement et
de changer quelques paramètres.
Que représente la pente de la droite linéaire (non
dessinée) qui traverse toutes les ondulations ?
Quelle est la pente de cette droite ?
Combien de suites du lézard essentiellement
différentes a-t-on ?
« Les Romains pratiquaient la décimation lors
des défaites de leurs propres armées. En cas de défaite grave, la sentence
pouvait être cruelle : un légionnaire sur dix était exécuté parmi les
survivants, l’objectif étant de punir la légion, qui était jugée collectivement
responsable de la défaite. Les légionnaires devant être punis étaient divisés
en groupes de dix. Chaque soldat piochait un « papier », et ceux sur
qui le sort tombait étaient battus à mort ou lapidés par leurs neuf camarades. »
(tiré de Wikipédia)
Sur le même principe qu’une suite du lézard, pour
obtenir une suite de décimation, on cherche à retrouver la suite d’origine en
enlevant un terme sur dix, la suite des termes ôtés redonnant elle aussi la
suite originale.
D = 1,2,3,4,5,6,7,8,9,1,1,1,1,1,1,1,1,1,1,2,1,2,1,2,1,2,1,2,1,3,2,1,3,2,1,3,2,1,3,4,2,...
En vous inspirant du programme précédent, créez la
fonction f [t_ , nbtermes_] donnant nbtermes termes de la suite de
décimation généralisée dont les premiers éléments sont dans la liste t.
Par exemple f[{1,2,3,4,5,6,7,8,9},10000] donnera les
10000 premiers termes de la suite commençant par 1,2,3,4,5,6,7,8,9.
On aura donc :
f[{1,2,3,4,5,6,7,8,9},10000] = 1,2,3,4,5,6,7,8,9,1,1,1,1,1,1,1,1,1,1,2,1,2,1,2,1,
...
Ou encore
f[{1,2,3,4},400] qui donnera
1,2,3,4,1,1,1,1,1,2,1,2,1,2,3,1,2,3,1,4, ...
Comme précédemment, représenter graphiquement l’accumulation
des termes, puis trouver les positions (si elles existent) des séquences
« 555 » (par exemple), ou encore « 666 » dans une suite de
décimation. Et enfin, faire une table des fréquences du nombre de 1, de 2, de
3, ... contenus dans la suite.
Pour les 10000 premiers termes de la suite de
décimation, vous devriez trouver environ 29% de « 1 », 19% de
« 2 », 14% de « 3 », ...
Expérimentez, par exemple en assignant une direction
à chaque terme de la suite, puis en représentant la trajectoire en
découlant (ci-dessous 300 termes de la
suite commençant par 1,2,3,4,5,6,7,8,9,1,1,... donc la suite de décimation, et
400 termes de celle commençant par 1,2,3,4,1,1,1,1,1,2,1,2... avec un terme sur
cinq.
À vous de jouer...
Qu’obtient-on pour une suite de
« quadrimation », ou une de « quintimation » commençant par
1,2,3, ... ?
Ci-dessous, la trajectoire associée aux 10 000 premiers termes de la
suite de décimation, en modifiant légèrement la règle de formation de la
trajectoire ; on constate que le 1 est plus fréquent dans les termes de la
suite que le 2, qui est lui-même plus fréquent que le 3, et ainsi de suite.
En guise de « compensation directionnelle
» on multiplie par 2 la direction associée au terme 2, de même, on multiplie
par 3 celle associée au terme 3, ... et, finalement, la direction associée à 9
est multipliée par 9.
On obtient alors une jolie et curieuse amorce de
spirale.
Le principe de ces suites est dû à Eric Angelini, et
elles ont été présentées dans le magazine « Pour La Science »