Concatenation of
Prime strings
On Thu, Oct 15,
2009 at 6:30 AM:
Hello SeqFans,
this seq seems absent from the OEIS:
S =
2,3,5,7,11,13,17,19,22,23,25,27,29,31,32,33,35,37,41,43,47,52,53,55,57,59,61,67,71,72,73,75,77,79,83,89,97,101,103,107,109,112,...
Example: 112 is in S because 112 can be
seen as the concatenation of 11 and 2 -- two "prime strings"
109 is in S
because the string 109 is... prime
See also:
A105184 Primes that can be written as concatenation of two primes in
decimal representation.
A019549 Primes formed by concatenating other primes.
A129800 Prime numbers that can be written as the concatenation of two
other prime numbers in exactly one way.
Best,
É.
__________
Maximilian Hasler:
(...)
I submitted some
more terms & (new) PARI code [prime strings with leading zero are
forbidden].
%S A152242 (PARI) is_A152242(n)={
/* If n is even, the last
digit must
be 2 and [n\10] (if nonzero)
must be in this sequence. (This check is
not necessary but improves speed.) */
bittest(n,0)
| return( n%10==2 &
(n<10 | is_A152242(n\10))); isprime(n) &
return(1); for(i=1,#Str(n)-1,
n%10^i>10^(i-1) & isprime( n%10^i )
& is_A152242( n\10^i) & return(1)) }
More terms:
2, 3, 5, 7, 11,
13, 17, 19, 22, 23, 25, 27, 29, 31, 32, 33, 35, 37, 41, 43, 47, 52, 53, 55, 57,
59, 61, 67, 71, 72, 73, 75, 77, 79, 83, 89, 97, 101, 103, 107, 109, 112, 113,
115, 117, 127, 131, 132, 133, 135, 137, 139, 149, 151, 157, 163, 167, 172, 173,
175, 177, 179, 181, 191, 192, 193, 195, 197, 199, 211, 213, 217, 219, 222, 223,
225, 227, 229, 231, 232, 233, 235, 237, 239, 241, 243, 247, 251, 252, 253, 255,
257, 259, 261, 263, 267, 269, 271, 272, 273, 275, 277, 279, 281, 283, 289, 292,
293, 295, 297, 307, 311, 312, 313, 315, 317, 319, 322, 323, 325, 327, 329, 331,
332, 333, 335, 337, 341, 343, 347, 349, 352, 353, 355, 357, 359, 361, 367, 371,
372, 373, 375, 377, 379, 383, 389, 397, 401, 409, 412, 413, 415, 417, 419, 421,
431, 432, 433, 435, 437, 439, 443, 449, 457, 461, 463, 467, 472, 473, 475, 477,
479, 487, 491, 499, 503, 509, 511, 513, 517, 519, 521, 522, 523, 525, 527, 529,
531, 532, 533, 535, 537, 541, 543, 547, 552, 553, 555, 557, 559, 561, 563, 567,
569, 571, 572, 573, 575, 577, 579, 583, 587, 589, 592, 593, 595, 597, 599, 601,
607, 612, 613, 615, 617, 619, 631, 641, 643, 647, 653, 659, 661, 672, 673, 675,
677, 683, 691, 701, 709, 711, 712, 713, 715, 717, 719, 722, 723, 725, 727, 729,
731, 732, 733, 735, 737, 739, 741, 743, 747, 751, 752, 753, 755, 757, 759, 761,
767, 769, 771, 772, 773, 775, 777, 779, 783, 787, 789, 792, 793, 795, 797, 809,
811, 821, 823, 827, 829, 832, 833, 835, 837, 839, 853, 857, 859, 863, 877, 881,
883, 887, 892, 893, 895, 897, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971,
972, 973, 975, 977, 983, 991, 997, ...
__________
Many thanks,
Maximilian, Zakir & Neil!
Back to main page (in
French)