An array alternating non-primes

and primes

 

 

 

[Sent: Monday, April 8, 2013 0:00 AM]

 

Hello SeqFans,

 

http://oeis.org/A083197... has given me the idea of a variation. Here is A083197:

 

> Triangular array, read by rows, where

  if n is odd the n-th row consists of n least unused non-primes, while

  if n is even the n-th row consists of the n least unused primes.

 

  Triangle begins:

  1

  2 3

  4 6 8

  5 7 11 13

  9 10 12 14 15

  17 19 23 29 31 37

  etc.

 

-----------------

 

... In my variation the size of each row is given by the successive integers of the sequence itself, not by n. Thus the array would begin:

 

                                    row size & content

 

1                                     1    (non-prime)

2 3                                   2    (primes)

4 6 8                                 3    (non-primes)

5 7 11 13                             4    (primes)

9 10 12 14 15 16                      6    (non-primes)

17 19 23 29 31 37 41 43               8    (primes)

18 20 21 22 24                        5    (non-primes)

47 51 53 59 61 67 71                  7    (primes)

25 26 27 28 30 32 33 34 35 36 38     11    (non-primes)

  ...

 

As A083197, this new sequence is of course a permutation of the natural numbers.

 

Best,

Ι.

 

__________

 

[Maximilian Hasler]:

 

Dear Eric & SeqFans,

 

First (yet somehow least important), let me just correct a smallerror, "51" is not prime and so the row starting with 47 should read 47,53,59,61,67,71,73.

 

Your post inspired me some more ideas:

 

First, I noticed that your construction can be iterated. The first lines remain the same, but then, due to variing row lengths, primes and non-primes get mixed in different ways.

But the changes appear later and later: In the next step, the sequence would differ due to the row with length 16 instead of 17, and the index of that row is the sum of all preceding numbers (way over 100).

 

Nonetheless, there is the "limiting" sequence to which the construction converges (which coincides for the abovementioned reason with the (corrected) terms of your example,

 

1,

2, 3,

4, 6, 8,

5, 7, 11, 13,

9, 10, 12, 14, 15, 16,

17, 19, 23, 29, 31, 37, 41, 43,

18, 20, 21, 22, 24,

47, 53, 59, 61, 67, 71, 73,

25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38,

79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,

...

 

The same definition as A083197, but filling with nonnegative instead of positive integers, yields another variation not in the OEIS:

 

0

2 3

1 4 6

5 7 11 13

8 9 10 12 14

 

(The odd rows are just "shifted" by 1 element wrt A083197, due to the initial 0.)

 

To apply your idea here, we could say that there’d be an initial row 0 with 0 primes, so this empty row zero would be followed by:

 

row 1 with 2 non-primes : 0, 1,

row 2 with 3 primes :     2, 3, 5

row 3 with 1 non-prime :  4

row 4 with 4 primes :     7, 11, 13, 17

row 5 with 6 composites : 6, 8, 9, 10, 12, 14

etc.

 

Iterating this construction once more gives:

 

row 0 with 0 primes,

row 1 with 1 non-primes : 0,

row 2 with 2 primes :     2, 3,

row 3 with 3 non-primes : 1,4,6

row 4 with 5 primes :     5, 7, 11, 13, 17

row 5 with 4 composites : 8, 9, 10, 12

etc.

 

I think that even and odd sequences of this sequence (of sequences) converge respectively to two distinct limits

 

0,

2, 3,

1, 4, 6,

5, 7, 11, 13, 17,

8, 9, 10, 12,

19, 23, 29, 31, 37, 41, 43,

14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27,

47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103,

28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50,

...

 

And

 

0, 1,

2, 3, 5,

4,

7, 11, 13, 17,

6, 8, 9, 10, 12, 14,

19, 23, 29, 31, 37,

15, 16, 18, 20, 21, 22, 24,

41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,

25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40,

...

 

PS: For my records, I get this by iterating pnp(%,,1) with

{pnp(a,nnp=-1,f=0,na=[],maxrow=10)=np=1;for(n=1,min(maxrow,#a),for(j=1,a[n],

na=concat(na,if(bittest(n,0)==f,np=nextprime(np+1),until(!isprime(nnp++),);nnp));print1(na[#na]","));print);na}

 

While for your sequences (starting with 1) I have to set the 2nd parameter nnp to 0 and the 3rd (hack to exchange n even<=>odd) to 0

 

__________

 

[Hans Havermann]:

 

Maximilian Hasler:

 

> 1,

> 2, 3,

> 4, 6, 8,

> 5, 7, 11, 13,

> 9, 10, 12, 14, 15, 16,

> 17, 19, 23, 29, 31, 37, 41, 43,

> 18, 20, 21, 22, 24,

> 47, 53, 59, 61, 67, 71, 73,

> 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38,

> 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,

> ...

 

If you just want to see more rows, I’ve put another 150 here:

 

http://chesswanks.com/num/NotTriangular/

 

nt_1.gifnt_2.gif

1

2

3

4

6

8

5

7

11

13

9

10

12

14

15

16

17

19

23

29

31

37

41

43

18

20

21

22

24

47

53

59

61

67

71

73

25

26

27

28

30

32

33

34

35

36

38

79

83

89

97

101

103

107

109

113

127

131

137

139

39

40

42

44

45

46

48

49

50

149

151

157

163

167

173

179

181

191

193

51

52

54

55

56

57

58

60

62

63

64

65

197

199

211

223

227

229

233

239

241

251

257

263

269

271

66

68

69

70

72

74

75

76

77

78

80

81

82

84

85

277

281

283

293

307

311

313

317

331

337

347

349

353

359

367

373

86

87

88

90

91

92

93

94

95

96

98

99

100

102

104

105

106

379

383

389

397

401

409

419

421

431

433

439

443

449

457

461

463

467

479

487

108

110

111

112

114

115

116

117

118

119

120

121

122

123

124

125

126

128

129

130

132

133

134

491

499

503

509

521

523

541

547

557

563

569

571

577

587

593

599

601

607

613

617

619

631

641

643

647

653

659

661

673

135

136

138

140

141

142

143

144

145

146

147

148

150

152

153

154

155

156

158

159

160

161

162

164

165

166

168

169

170

171

172

677

683

691

701

709

719

727

733

739

743

751

757

761

769

773

787

797

809

811

821

823

827

829

839

853

857

859

863

877

881

883

887

907

911

919

929

937

174

175

176

177

178

180

182

183

184

185

186

187

188

189

190

192

194

195

196

198

200

201

202

203

204

205

206

207

208

209

210

212

213

214

215

216

217

218

219

220

221

941

947

953

967

971

977

983

991

997

1009

1013

1019

1021

1031

1033

1039

1049

1051

1061

1063

1069

1087

1091

1093

1097

1103

1109

1117

1123

1129

1151

1153

1163

1171

1181

1187

1193

1201

1213

1217

1223

1229

1231

222

224

225

226

228

230

231

232

234

235

236

237

238

240

242

243

244

245

1237

1249

1259

1277

1279

1283

1289

1291

1297

1301

1303

1307

1319

1321

1327

1361

1367

1373

1381

1399

246

247

248

249

250

252

253

254

255

256

258

259

260

261

262

264

265

266

267

268

270

1409

1423

1427

1429

1433

1439

1447

1451

1453

1459

1471

1481

1483

1487

1489

1493

1499

1511

1523

1531

1543

1549

272

273

274

275

276

278

279

280

282

284

285

286

287

288

289

290

291

292

294

295

296

297

298

299

 

__________

 

Many thanks, Maximilian and Hans!

Best,

Ι.