An array
alternating non-primes
and primes
[Sent:
Monday, April 8, 2013 0:00 AM]
Hello SeqFans,
http://oeis.org/A083197... has given me the idea
of a variation. Here is A083197:
> Triangular
array, read by rows, where
if n is odd the n-th row consists of n least unused non-primes, while
if n is even the n-th row consists of the n least unused primes.
Triangle begins:
1
2 3
4 6 8
5 7 11 13
9 10 12 14 15
17 19 23 29 31 37
etc.
-----------------
... In my variation
the size of each row is given by the successive integers of the sequence
itself, not by n. Thus the array would begin:
row size & content
1 1 (non-prime)
2 3 2 (primes)
4 6 8 3 (non-primes)
5 7 11 13 4 (primes)
9 10 12 14 15 16
6 (non-primes)
17 19 23 29 31 37 41 43 8 (primes)
18 20 21 22 24 5 (non-primes)
47 51 53 59 61 67 71 7 (primes)
25 26 27 28 30 32 33 34 35 36 38 11
(non-primes)
...
As A083197, this new
sequence is of course a permutation of the natural numbers.
Best,
Ι.
__________
[Maximilian Hasler]:
Dear Eric & SeqFans,
First (yet somehow
least important), let me just correct a smallerror,
"51" is not prime and so the row starting with 47 should read
47,53,59,61,67,71,73.
Your post inspired me
some more ideas:
First, I noticed that
your construction can be iterated. The first lines remain the same, but then,
due to variing row lengths, primes and non-primes get
mixed in different ways.
But the changes
appear later and later: In the next step, the sequence would differ due to the
row with length 16 instead of 17, and the index of that row is the sum of all
preceding numbers (way over 100).
Nonetheless, there is
the "limiting" sequence to which the construction converges (which
coincides for the abovementioned reason with the (corrected) terms of your
example,
1,
2, 3,
4, 6, 8,
5, 7, 11, 13,
9, 10, 12, 14, 15,
16,
17, 19, 23, 29, 31,
37, 41, 43,
18, 20, 21, 22, 24,
47, 53, 59, 61, 67,
71, 73,
25, 26, 27, 28, 30,
32, 33, 34, 35, 36, 38,
79, 83, 89, 97, 101,
103, 107, 109, 113, 127, 131, 137, 139,
...
The same definition
as A083197, but filling with nonnegative instead of positive integers, yields
another variation not in the OEIS:
0
2 3
1 4
6
5 7
11 13
8 9
10 12 14
(The odd rows are
just "shifted" by 1 element wrt A083197,
due to the initial 0.)
To apply your idea here,
we could say that there’d be an initial row 0 with 0 primes, so this empty row
zero would be followed by:
row 1 with 2 non-primes : 0, 1,
row 2 with 3 primes : 2, 3, 5
row 3 with 1 non-prime : 4
row 4 with 4 primes : 7, 11, 13, 17
row 5 with 6 composites : 6, 8, 9, 10, 12,
14
etc.
Iterating this
construction once more gives:
row 0 with 0 primes,
row 1 with 1 non-primes : 0,
row 2 with 2 primes : 2, 3,
row 3 with 3 non-primes : 1,4,6
row 4 with 5 primes : 5, 7, 11, 13, 17
row 5 with 4 composites : 8, 9, 10, 12
etc.
I think that even and
odd sequences of this sequence (of sequences) converge respectively to two
distinct limits
0,
2, 3,
1, 4, 6,
5, 7, 11, 13, 17,
8, 9, 10, 12,
19, 23, 29, 31, 37,
41, 43,
14, 15, 16, 18, 20,
21, 22, 24, 25, 26, 27,
47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101, 103,
28, 30, 32, 33, 34,
35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50,
...
And
0, 1,
2, 3, 5,
4,
7, 11, 13, 17,
6, 8, 9, 10, 12, 14,
19, 23, 29, 31, 37,
15, 16, 18, 20, 21,
22, 24,
41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83,
25, 26, 27, 28, 30,
32, 33, 34, 35, 36, 38, 39, 40,
...
PS: For my records, I get this
by iterating pnp(%,,1) with
{pnp(a,nnp=-1,f=0,na=[],maxrow=10)=np=1;for(n=1,min(maxrow,#a),for(j=1,a[n],
na=concat(na,if(bittest(n,0)==f,np=nextprime(np+1),until(!isprime(nnp++),);nnp));print1(na[#na]","));print);na}
While for your
sequences (starting with 1) I have to set the 2nd parameter nnp to 0 and the 3rd (hack to exchange n
even<=>odd) to 0
__________
[Hans Havermann]:
Maximilian Hasler:
> 1,
> 2, 3,
> 4, 6, 8,
> 5, 7, 11, 13,
> 9, 10, 12, 14, 15, 16,
> 17, 19, 23, 29, 31, 37, 41, 43,
> 18, 20, 21, 22, 24,
> 47, 53, 59, 61, 67, 71, 73,
> 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38,
> 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,
> ...
If you just want to see more rows, I’ve put another 150 here:
http://chesswanks.com/num/NotTriangular/
1 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 |
3 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 |
6 |
8 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 |
7 |
11 |
13 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 |
10 |
12 |
14 |
15 |
16 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
18 |
20 |
21 |
22 |
24 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
47 |
53 |
59 |
61 |
67 |
71 |
73 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
25 |
26 |
27 |
28 |
30 |
32 |
33 |
34 |
35 |
36 |
38 |
||||||||||||||||||||||||||||||||||||||||||||||||||||
79 |
83 |
89 |
97 |
101 |
103 |
107 |
109 |
113 |
127 |
131 |
137 |
139 |
||||||||||||||||||||||||||||||||||||||||||||||||||
39 |
40 |
42 |
44 |
45 |
46 |
48 |
49 |
50 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
149 |
151 |
157 |
163 |
167 |
173 |
179 |
181 |
191 |
193 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
51 |
52 |
54 |
55 |
56 |
57 |
58 |
60 |
62 |
63 |
64 |
65 |
|||||||||||||||||||||||||||||||||||||||||||||||||||
197 |
199 |
211 |
223 |
227 |
229 |
233 |
239 |
241 |
251 |
257 |
263 |
269 |
271 |
|||||||||||||||||||||||||||||||||||||||||||||||||
66 |
68 |
69 |
70 |
72 |
74 |
75 |
76 |
77 |
78 |
80 |
81 |
82 |
84 |
85 |
||||||||||||||||||||||||||||||||||||||||||||||||
277 |
281 |
283 |
293 |
307 |
311 |
313 |
317 |
331 |
337 |
347 |
349 |
353 |
359 |
367 |
373 |
|||||||||||||||||||||||||||||||||||||||||||||||
86 |
87 |
88 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
98 |
99 |
100 |
102 |
104 |
105 |
106 |
||||||||||||||||||||||||||||||||||||||||||||||
379 |
383 |
389 |
397 |
401 |
409 |
419 |
421 |
431 |
433 |
439 |
443 |
449 |
457 |
461 |
463 |
467 |
479 |
487 |
||||||||||||||||||||||||||||||||||||||||||||
108 |
110 |
111 |
112 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
128 |
129 |
130 |
132 |
133 |
134 |
||||||||||||||||||||||||||||||||||||||||
491 |
499 |
503 |
509 |
521 |
523 |
541 |
547 |
557 |
563 |
569 |
571 |
577 |
587 |
593 |
599 |
601 |
607 |
613 |
617 |
619 |
631 |
641 |
643 |
647 |
653 |
659 |
661 |
673 |
||||||||||||||||||||||||||||||||||
135 |
136 |
138 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
150 |
152 |
153 |
154 |
155 |
156 |
158 |
159 |
160 |
161 |
162 |
164 |
165 |
166 |
168 |
169 |
170 |
171 |
172 |
||||||||||||||||||||||||||||||||
677 |
683 |
691 |
701 |
709 |
719 |
727 |
733 |
739 |
743 |
751 |
757 |
761 |
769 |
773 |
787 |
797 |
809 |
811 |
821 |
823 |
827 |
829 |
839 |
853 |
857 |
859 |
863 |
877 |
881 |
883 |
887 |
907 |
911 |
919 |
929 |
937 |
||||||||||||||||||||||||||
174 |
175 |
176 |
177 |
178 |
180 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
192 |
194 |
195 |
196 |
198 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
||||||||||||||||||||||
941 |
947 |
953 |
967 |
971 |
977 |
983 |
991 |
997 |
1009 |
1013 |
1019 |
1021 |
1031 |
1033 |
1039 |
1049 |
1051 |
1061 |
1063 |
1069 |
1087 |
1091 |
1093 |
1097 |
1103 |
1109 |
1117 |
1123 |
1129 |
1151 |
1153 |
1163 |
1171 |
1181 |
1187 |
1193 |
1201 |
1213 |
1217 |
1223 |
1229 |
1231 |
||||||||||||||||||||
222 |
224 |
225 |
226 |
228 |
230 |
231 |
232 |
234 |
235 |
236 |
237 |
238 |
240 |
242 |
243 |
244 |
245 |
|||||||||||||||||||||||||||||||||||||||||||||
1237 |
1249 |
1259 |
1277 |
1279 |
1283 |
1289 |
1291 |
1297 |
1301 |
1303 |
1307 |
1319 |
1321 |
1327 |
1361 |
1367 |
1373 |
1381 |
1399 |
|||||||||||||||||||||||||||||||||||||||||||
246 |
247 |
248 |
249 |
250 |
252 |
253 |
254 |
255 |
256 |
258 |
259 |
260 |
261 |
262 |
264 |
265 |
266 |
267 |
268 |
270 |
||||||||||||||||||||||||||||||||||||||||||
1409 |
1423 |
1427 |
1429 |
1433 |
1439 |
1447 |
1451 |
1453 |
1459 |
1471 |
1481 |
1483 |
1487 |
1489 |
1493 |
1499 |
1511 |
1523 |
1531 |
1543 |
1549 |
|||||||||||||||||||||||||||||||||||||||||
272 |
273 |
274 |
275 |
276 |
278 |
279 |
280 |
282 |
284 |
285 |
286 |
287 |
288 |
289 |
290 |
291 |
292 |
294 |
295 |
296 |
297 |
298 |
299 |
__________
Many thanks,
Maximilian and Hans!
Best,
Ι.