Sequence and First differences use a 3-digit alphabet

 

[Les suites de cette page n’affichent que des nombres utilisant certains chiffreset pas d’autres.

Toutes les différences entre termes consécutifs desdites suites obéissent à cette même règle]

 

 

Hello SeqFans,

here is the idea:

 

st seq Q = 1 9 18 19  118 119   1118 1119    11118 11119 ...

1st diff =  8 9  1  99   1   999    1    9999     1        

 

We use here only the digits 1, 8 and 9 for Q and Q’s first differences. The pattern is obvious -- and even more obvious in Q’:       

 

st seq Q’= 8 9 18 19  118 119   1118 1119    11118 11119 ...

1st diff =  1 9  1  99   1   999    1    9999     1        

 

Terms of Q and Q’ are positive and monotonically increasing; both seq are infinite. But R isn’t:

 

st seq R = 3 7  44 47   END

1st diff =  4 37  3   ?

 

For a 2-digit alphabet, we have:

 

T1 = 1, 11, 111, 1111, 11111, ... [1st diff. = 10, 100, 1000, 10000, ...]

T2 = 2, 22, 222, 2222, 22222, ... [1st diff. = 20, 200, 2000, 20000, ...]

...

T9 = 9, 99, 999, 9999, 99999, ... [1st diff. = 90, 900, 9000, 90000, ...]

 

Adding a 3rd term to some T’s seq above brings a bunch of new 3-digit seqs -- for instance:

 

st seq U = 1 2  12  22   122   222    1222    2222 ...

1st diff =  1 10  10  100   100   1000    1000

 

st seq U’= 10 11 12  22   122   222 ...

1st diff =   1  1  10  100   100

 

st seq V = 2 4  24  44   244   444    2444    4444 ...

1st diff =  2 20  20  200   200   2000    2000

 

st seq V’= 20 22 24  44   244   444 ...

1st diff =   2  2  20  200   200

 

etc.

 

Questions:

---------

(a) Are there other such sequences using 3 digits but no zero

    (like the seq Q which opens this mail; R was a unfortunate try)?

(b) Could someone compute ALL such 3-digit seq?

(c) What would be the lexicographically first 4-digit seq?

 

Best,

É.

 

_______________

 

A couple of minutes later, I’ve posted this:

 

> What would be the lexicographically first 4-digit seq?

 

...with zero, it might be:

 

st seq Z = 1 2 3  13  23  33   133   233   333 ...

1st diff =  1 1 10  10  10  100   100   100

 

... but without zero, no idea...

 

_______________

 

Then Franklin Adams-Watters quickly answered:

 

> What would be the lexicographically first 4-digit seq?

 

That would be (view with fixed width font):

 

1,2,3,6,12,13,16,22,23,26,32,33,36,62,63,66,132,133,136,162,163,166,232,233,236,262,263,266,332,333,336,362,363,

 1 1 3 6  1  3  6  1  3  6  1  3  26 1  3  66  1   3   26  1   3   66  1   3   26  1   3   66  1   3   26  1   3

 

366,632,633,636,662,663,666,1332, ...

  266  1   3   26  1   3  666

 

Starting 1,2,3,4 or 1,2,3,5, no next term is possible, so this is minimal. From the above, it should be clear that the sequence can be extended indefinitely.

 

Franklin T. Adams-Watters

 

_______________

 

I did then post this comment:

 

Waow, great, Franklin, thanks!

 

I’ve just found another zeroless 3-digit infinite seq:

 

1 2 11 12 21 22  121 122  221 222   1221 1222   2221 2222 ...

 1 9  1  9  1  99   1   99   1   999    1    999    1

 

Best,

É.

_______________

 

Then came this last post, from Douglas McNeil:

 

There’s also:

 

[4, 5, 9]

 

[4, 9,  54, 59,   554, 559,    5554, 5559]

[  5, 45,  5,  495,   5,   4995,    5    ]

 

Doug

 

--

Department of Earth Sciences

University of Hong Kong

 

_______________

 

Beautiful, Doug!

 

That’s all for now — many thanks to all who contributed!

Best,

É.

[June 10th, 2010]