Boucles d’Alexandre

(Alexandre’s loops/curls)

 

Happy birthday !

(March 28th)

 

A=1, B=2, C=3, D=4, E=5, F=6, G=7, H=8, I=9, J=10, K=11, L=12, M=13, N=14, O=15, P=16, Q=17, R=18, S=19, T=20, U=21, V=22, W=23, X=24, Y=25, Z=26.

 

Start with a word or a name – here “ALEXANDRE”;

 

Write on top of each letter its rank in the alphabet:

 

     1 12 5 24 1 14 4 18 5

     A  L E  X A  N D  R E

 

Start with the first integer (here ‘1’), add or subtract the next integer (‘12’) in order to keep the result as close as possible to zero – but never under zero (we do here 1+12=13 as we cannot do 1-12=-11):

 

     1 12 5 24  1 14  4 18  5

     A  L E  X  A  N  D  R  E

 S = 1,13,

 

Proceed like this for the full word/name:

 

     1+12-5+24 -1+14 -4+18 -5

     A  L E  X  A  N  D  R  E

 S = 1,13,8,32,31,17,13,31,26

 

Duplicate the word/name and compute S accordingly – until it appears that S has entered a loop (in yellow here):

 

     1+12-5+24 -1+14 -4+18 -5 -1-12-5+24 -1-14 -4+18 -5 -1

     A  L E  X  A  N  D  R  E  A  L E  X  A  N  D  R  E  A...

 S = 1,13,8,32,31,17,13,31,26,25,13,8,32,33,17,13,31,26,25, ...

 

 

The next example will raise a few questions:

 

     5 18  9  3 5 18  9  3 5 18  9  3 5 18  9  3 5 18  9  3  5 18  9  3  5 18  9  3  5 18  9  3      

     E  R  I  C E  R  I  C E  R  I  C E  R  I  C E  R  I  C  E  R  I  C  E  R  I  C  E  R  I  C

 S = 5,23,14,11,6,24,15,12,7,25,16,13,8,26,17,14,9,27,18,15,10,28,19,16,11,29,20,17,12,30,21,18,

 

     5 18  9  3  5 18  9  3  5 18  9  3  5 18  9  3  5 18  9  3  5 18 9 3 5 18  9 3 5 18  9 3      

     E  R  I  C  E  R  I  C  E  R  I  C  E  R  I  C  E  R  I  C  E  R I C E  R  I C E  R  I C

S = 13,31,22,19,14,32,23,20,15,33,24,21,16,34,25,22,17,35,26,23,18, 0,9,6,1,19,10,7,2,20,11,8,

 

     5 18  9 3 5 18  9  3 5 18  9  3  5 18  9  3  5 18  9  3  5 18 9 3 5 18  9 3 5 18  9 3      

     E  R  I C E  R  I  C E  R  I  C ...

 S = 3,21,12,9,4,22,13,10,5,23,14,11,... (yellow loop length = 72)

 

 

Question 1:

Alexandre’s loop has 9 terms and Eric’s one 72: is there a quick way to anticipate these results, only by considering a few letters of the name/word?

 

Question 2:

What is the fate of the number names (in English)? Are there numbers N whose loop has N terms?

 

Question 3:

What are the numbers N which appear in their S sequence? ZERO is such a number:

 

     26  5 18 15 26  5 18 15 26  5 18 15 26  5 18 15 26  5 18 15 26  5 18 15

      Z  E  R  O  Z  E  R  O  Z  E  R  O  Z  E  R  O  Z  E  R  O  Z  E  R  O

 S = 26,21, 3,18,44,39,21, 6,32,27, 9,24,50,45,27,12,38,33,15, 0,26,21,... (20-term loop; 0 belongs to S)

 

Best,

É.

 

-------------

 

Maximilian Hasler and Hans Havermann were quick to answer questions 2 and 3:

 

Maximilian, question 3, “zero” to “twenty” (YES = N belongs to its sequence S):

 

("zero") YES

S = 26,21,3,18,44,39,21,6,32,27,9,24,50,45,27,12,38,33,15,0,26,*** LOOP DETECTED

    of length = 20

 

("one") YES

S = 15,1,6,21,7,2,17,3,8,23,9,4,19,5,0,15,*** LOOP DETECTED of length = 15

 

("two") NO

S = 20,43,28,8,31,16,36,13,28,*** LOOP DETECTED of length = 6

 

("three") NO

S = 20,12,30,25,20,0,8,26,21,16,36,28,10,5,0,20,*** LOOP DETECTED of length = 15

 

("four") NO

S = 6,21,0,18,12,27,6,24,18,3,24,6,0,15,36,18,*** LOOP DETECTED of length = 12

 

("five") NO

S = 6,15,37,32,26,17,39,34,28,19,41,36,30,21,43,38,32,23,1,6,0,9,31,26,20,11,33,

    28,22,13,35,30,24,15,*** LOOP DETECTED of length = 32

 

("six") YES

S = 19,10,34,15,6,30,11,2,26,7,16,40,21,12,36,17,8,32,13,4,28,9,0,24,5,14,38,19,

    *** LOOP DETECTED of length = 27

 

("seven") NO

S = 19,14,36,31,17,36,31,9,4,18,37,32,10,5,19,0,5,27,22,8,27,22,0,5,*** LOOP DETECTED

    of length = 10

 

("eight") YES

S = 5,14,7,15,35,30,21,14,6,26,21,12,5,13,33,28,19,12,4,24,19,10,3,11,31,26,17,10,2,22,

    17,8,1,9,29,24,15,8,0,20,15,6,13,5,25,20,11,4,12,32,27,18,11,3,23,18,9,2,10,30,25,

    16,9,1,21,16,7,0,8,28,23,14,*** LOOP DETECTED of length = 70

 

("nine") YES

S = 14,5,19,14,0,9,23,18,4,13,27,22,8,17,3,8,22,13,*** LOOP DETECTED of length = 8

 

("ten") YES

S = 20,15,1,21,16,2,22,17,3,23,18,4,24,19,5,25,20,6,26,21,7,27,22,8,28,23,9,29,24,10,30,

    25,11,31,26,12,32,27,13,33,28,14,34,29,15,35,30,16,36,31,17,37,32,18,38,33,19,39,34,

    20,0,5,19,*** LOOP DETECTED of length = 6

 

("eleven") YES

S = 5,17,12,34,29,15,10,22,17,39,34,20,15,3,8,30,25,11,6,18,13,35,30,16,11,23,18,40,35,

    21,16,4,9,31,26,12,7,19,14,36,31,17,12,0,5,27,22,8,3,15,10,32,27,13,8,20,15,37,32,18,

    13,1,6,28,23,9,4,16,11,33,28,14,9,21,16,38,33,19,14,2,7,29,24,10,5,*** LOOP DETECTED

    of length = 84

 

("twelve") NO

S = 20,43,38,26,4,9,29,6,1,13,35,30,10,33,28,16,38,33,13,36,31,19,41,36,16,39,34,22,0,5,

    25,2,7,19,*** LOOP DETECTED of length = 12

 

("thirteen") NO

S = 20,12,3,21,1,6,1,15,35,27,18,0,20,15,10,24,4,12,*** LOOP DETECTED of length = 16

 

("fourteen") YES

S = 6,21,0,18,38,33,28,14,8,23,2,20,0,5,0,14,*** LOOP DETECTED of length = 8

 

("fifteen") YES

S = 6,15,9,29,24,19,5,11,2,8,28,23,18,4,10,1,7,27,22,17,3,9,0,6,26,21,16,2,8,17,11,31,26,

    21,7,1,10,4,24,19,14,0,6,*** LOOP DETECTED of length = 42

 

("sixteen") NO

S = 19,10,34,14,9,4,18,37,28,4,24,19,14,0,19,*** LOOP DETECTED of length = 14

 

("seventeen") YES

S = 19,14,36,31,17,37,32,27,13,32,27,5,0,14,34,29,24,10,29,24,2,7,21,1,6,1,15,34,29,7,2,16,

    36,31,26,12,31,26,4,9,23,3,8,3,17,36,31,9,4,18,38,33,28,14,33,28,6,1,15,35,30,25,11,30,

    25,3,8,22,2,7,2,16,35,30,8,3,17,*** LOOP DETECTED of length = 72

 

("eighteen") NO

S = 5,14,7,15,35,30,25,11,6,15,8,0,20,15,10,24,19,10,3,11,31,26,21,7,2,11,4,12,32,27,22,8,3,

    12,5,13,33,28,23,9,4,13,6,14,34,29,24,10,5,*** LOOP DETECTED of length = 48

 

("nineteen") YES

S = 14,5,19,14,34,29,24,10,24,15,1,6,26,21,16,2,16,7,21,16,36,31,26,12,26,17,3,8,28,23,18,4,18,

    9,23,18,38,33,28,14,0,9,*** LOOP DETECTED of length = 8

 

("twenty") YES

S = 20,43,38,24,4,29,9,32,27,13,33,8,28,5,0,14,34,9,29,6,1,15,35,10,30,7,2,16,36,11,31,8,3,17,

    37,12,32,9,4,18,38,13,33,10,5,19,39,14,34,11,6,20,0,25,5,28,23,9,29,4,24,1,6,*** LOOP

    DETECTED of length = 12

 

 

Hans Havermann, question 3: What are the numbers N which appear in their S sequence?

 

The bracketed numbers are {length of S at end of the initial loop, position of N in S, length of the loop}

 

 1   one          {15,2,15}   N is in the loop: 2, 17, 32, 47, ...

 6   six          {27,5,27}   N is in the loop: 5, 32, 59, 86, ...

 8   eight        {75,32,16}

 9   nine         {20,6,5}

10   ten          {63,30,6}

11   eleven       {84,18,40}

14   fourteen     {16,8,8}

15   fifteen      {42,2,19}

17   seventeen    {81,5,3}

19   nineteen     {48,3,8}

20   twenty       {66,1,12}

21   twentyone    {36,13,18}

22   twentytwo    {63,22,54}  N is in the loop: 22, 76, 130, 184, ...

23   twentythree  {77,46,22}

24   twentyfour   {30,4,20}

25   twentyfive   {90,53,5}

26   twentysix    {72,36,72}  N is in the loop: 36, 108, 180, 252, ...

27   twentyseven  {55,9,38}

28   twentyeight  {22,20,2}

29   twentynine   {70,6,36}

32   thirtytwo    {36,24,8}

34   thirtyfour   {50,16,12}

38   thirtyeight  {165,138,2}

46   fortysix     {80,69,72}  N is in the loop: 69, 141, 213, 285, ...

48   fortyeight   {80,5,14}

 

The position of 22 in S of twentytwo is 22.

 

 

Hans Havermann, question 2: « What is the fate of the number names (in English)? Are there numbers N whose loop has N terms? »

 

I used a very old Mathematica routine that creates English number words from numbers and altered it to remove all spaces and hyphens:

 

NumberName[12345678901234567890123456789]

 

Twelveoctillionthreehundredfortyfiveseptillionsixhundredseventyeightsextillionninehundred

Onequintilliontwohundredthirtyfourquadrillionfivehundredsixtyseventrillioneighthundrednin

etybilliononehundredtwentythreemillionfourhundredfiftysixthousandsevenhundredeightynine

 

I then created a program to test these words for your property.

I have three solutions (number, NumberName, loop):

 

12   twelve   {16,39,34,22,0,5,25,2,7,19,41,36}

 

30   thirty   {20,12,3,21,1,26,6,14,5,23,3,28,8,0,9,27,7,32,12,4,13,31,11,36,16,8,17,35,15,40}

 

56   fiftysix {6,15,9,29,4,23,14,38,32,23,17,37,12,31,22,46,40,31,25,5,30,11,2,26,20,11,5,25,0,19,10,

               34,28,19,13,33,8,27,18,42,36,27,21,1,26,7,16,40,34,25,19,39,14,33,24,0}

 

It’s unlikely that there are more, but I’ll let it run a bit.

 

 

_____________________________

 

Thank you Maximilian and Hans!

Best,

É.