Absolute first differences
are a permutation of the primes
Hello SeqFans,
Would it be possible
to build two sequences A & B such that:
A is a permutation of the non-primes
B is a permutation of the primes
and B shows the
absolute first differences of A.
I guess A could start
like this (if we extend respectively A and B with the "smallest available
integer not leading to
a contradiction"):
A = 1 4 6 25 20
9 16 33 10
39 8 21
B = 3 2 19
5 11 7 17
23 29 31 13
Not sure if this is
possible, though...
Best,
É.
__________
[Jim Nastos] was quick to find a bug in my definition:
It depends on how these
are being built... B could go 3 2 19 5 11 7 17 13 (instead of 23)
But you would have to
be more specific with the "smallest available" rule is applied ...
It looks like you are
applying the smallest available rule to a1 a2 b1 a3 b2 a4 b3
...
But if the smallest
integer rule is applied to a1 b1 a2 b2 a3 b3, etc, then b8 should
be 13 instead of 23, but this causes a9 =
46 instead of 10.
This specification
should have to be part of the definition, if this ever gets submitted.
[Douglas McNeil] had anticipated Jim’s remark:
Hmm.
I constructed A to be the smallest it could be, giving:
sage: A[:50]
[1, 4, 6, 25, 8, 15,
10, 21, 34, 57, 14, 45, 16, 63, 22, 75, 38, 99, 20, 87, 28, 111, 40, 129, 26,
123, 50, 159, 32, 133, 240, 49, 162, 299, 18, 169, 12, 143, 282, 55, 204, 371,
24, 187, 360, 77, 256, 27, 208, 9]
sage: B[:49]
[3, 2, 19, 17, 7, 5,
11, 13, 23, 43, 31, 29, 47, 41, 53, 37, 61, 79, 67, 59, 83, 71, 89, 103, 97,
73, 109, 127, 101, 107, 191, 113, 137, 281, 151, 157, 131, 139, 227, 149, 167,
347, 163, 173, 283, 179, 229, 181, 199]
[Maximilian Hasler has decided to minimize B]:
Je crois qu’il faudrait
spécifier si c’est pour A ou
pour B qu’il faut choisir le "smallest available", ce qui ne revient pas forcément au même. Mais je pense que
c’est possible... au moins
en choisissant la plus petite possibilité
pour B.
Pour les premiers 100
termes, j’obtiens les
couples [A,B] suivants (valeurs de B avec signe) :
[[1, 3], [4, 2], [6, 19], [25,
-5], [20, 7], [27, -11], [16, 17], [33, 13], [46, 23], [69, -29], [40, -31],
[9, 41], [50, 37], [87, -43], [44, 47], [91, -53], [38, 61], [99, 59], [158,
67], [225, -71], [154, -73], [81, 79], [160, -83], [77, 89], [166, -101], [65,
97], [162, 103], [265, 107], [372, 109], [481, -113], [368, 127], [495, -131],
[364, 137], [501, -139], [362, -149], [213, -151], [62, 157], [219, -163], [56,
179], [235, -167], [68, 181], [249, -173], [76, 191], [267, -193], [74, 199],
[273, 197], [470, -211], [259, -223], [36, 239], [275, -227], [48, 241], [289,
-229], [60, 263], [323, -233], [90, 251], [341, -257], [84, 271], [355, -269],
[86, 277], [363, -281], [82, 283], [365, -293], [72, 313], [385, -307], [78,
317], [395, 311], [706, -331], [375, 337], [712, 347], [1059, -349], [710,
-353], [357, 359], [716, 367], [1083, 373], [1456, -379], [1077, -383], [694,
-389], [305, 397], [702, -401], [301, 419], [720, -421], [299, 409], [708,
431], [1139, 433], [1572, -439], [1133, -443], [690, 457], [1147, -449], [698,
-461], [237, 463], [700, 467], [1167, -479], [688, -487], [201, 491], [692,
499], [1191, 503], [1694, -509], [1185, -521], [664, -523]]
Il est facile de calculer 1000 termes en une fraction de seconde avec le code PARI suivant :
a=[];uA=Set(A=1);uB=[];for(n=1,999, forprime(B=1,default(primelimit),
setsearch(uB,B)
& next; (A>B & !setsearch(uA, A-B) & !isprime(A-B) & B = -B) | ( !setsearch(uA, A+B) & !isprime(A+B)) |
next; a=concat(a,[[A,B]]);
uA=setunion(uA,Set(A+=B));uB=setunion(uB,Set(abs(B)));next(2));error())
__________
Ok, Folks, chapter
closed in less than an hour after submission, thanks!
Thanks to all
contributors,
Best,
É.